Вторичное открытие законов наследственности значение. Вторичное открытие законов менделя, развитие концепции гена

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому ботанику-любителю Иоганну Грегору Менделю. В своих работах, выполнявшихся в период с 1856 по 1863г., он раскрыл основы законов наследственности.

Первое его внимание было обращено на выбор объекта. Для своих исследований Мендель избрал горох. Основанием для такого выбора послужило, во-первых, то, что горох - строгий самоопылитель, и это резко снижало возможность заноса нежелательной пыльцы; во-вторых, в то время имелось достаточное число сортов гороха, различавшихся по нескольким наследуемым признакам.

Мендель получил от различных ферм 34 сорта гороха. После двух годовой проверки, сохраняют ли они свои признаки неизменными при размножении без скрещивания, он отобрал для экспериментов 22 сорта. Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Во всех опытах с 7 парами сортов было подтверждено явление доминирования в первом поколении гибридов, обнаруженное Сажрэ и Нодэном. Мендель ввел понятие доминантного и рецессивного признаков, определив доминантными признаки, которые переходят в гибридные растения совершенно неизменными или почти неизменными , а рецессивными те, которые становятся при гибридизации скрытыми . Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков при скрещиваний.

Для дальнейшего анализа природы наследственности, Мендель изучил ещё несколько поколении гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

  • 1. Явление неравнозначности наследственных признаков.
  • 2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.
  • 3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличных от доминантных, но являющимися смешанными по своей природе.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками и определяемыми ими признаками организма. За счет перекомбинации задатков (впоследствии эти задатки В. Иоганнсен назвал генами), при скрещивании образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами. Это положение легло в основу фундаментального закона Менделя - закона чистоты гамет. Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, определили развитие науки более чем на четверть века.

Индивидуальные различия даже между близкородственными организмами вовсе не обязательно связаны с различием в генетической структуре этих особей; они могут быть связанны с неодинаковыми условиями жизни. Поэтому делать заключения о генетических различиях можно только на основании анализа большого числа особей. Первым, кто привлек внимание к математическим закономерностям в индивидуальной изменчивости, был бельгийский математик и антрополог А. Кэтлэ. Он явился одним из основателей статистики и теории вероятностей. В то время важный вопрос был о возможности передачи по наследству уклонений от средней количественной характеристики признака, наблюдаемых у отдельных индивидуумов. Выяснением этого вопроса занялись несколько исследователей. По своей значимости выделились работы Гальтона, который собрал данные о наследовании роста у человека. Затем Гальтон изучил наследование величины венчика цветка у душистого горошка и пришел к выводу, что потомству передается лишь небольшая часть уклонений, наблюдаемых у родителей. Гальтон попытался придать своему наблюдению математическое выражение, положив начало большой серии работ по математико-статистическим основам наследования. Последователь Гальтона К. Пирсон продолжил эту работу в более широких масштабах. Наиболее серьезное и ставшее классическим исследование вопросов, поднимавшихся Гальтоном и Пирсоном и их последователей, было выполнено в 1903 -1909 гг. В. Иоганнсеном, обратившим главное внимание на изучение генетически однородного материала. Исходя из полученных анализов, Иоганнсеном дал точное определение генотипа и фенотипа и заложил основы современного понимания роли индивидуальной изменчивости.

Впервые идея о дифференцирующих делениях ядра клеток развивающегося зародыша была высказана В. Ру. в 1883 г. Выводы Ру послужили отправной точкой для создания теории зародышевой плазмы, получившей окончательное оформление в 1892 г. Вейсман четко указал на носителей наследственных факторов - хромосомы.

С начало Ру 1883 г., а затем и Вейсман высказали предположение о линейном расположении в хромосомах наследственных факторов (хромативных зерен, по Ру, и ид по Вейсману) и их продольном расщеплении во время митоза, чем во многом предвосхитили будущую хромосомную теорию наследственности.

Развивая идею о неравно наследственном делении, Вейсман логично пришел к выводу о существовании в организме двух четко разграниченных клеточных линии - зародышевых и соматических. Первые, обеспечивая непрерывность передачи наследственной информации, "потенциально бессмертны" и способны дать начало новому организму. Вторые такими свойствами не обладают. Такое выделение двух категорий клеток имело большое положительное значение для последующего развития генетики.

В. Вальдейер в1888 г. предложил термин хромосома. Работы ботаников и животноводов подготовили почву быстрого признания законов Г. Менделя после их пере открытия в 1900 г.

Открытие Г. Менделем законов наследования.

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому ботанику-любителю Иоганну Грегору Менделю. В своих работах, выполнявшихся в период с 1856 по 1863г., он раскрыл основы законов наследственности.

Первое его внимание было обращено на выбор объекта. Для своих исследований Мендель избрал горох. Основанием для такого выбора послужило, во-первых, то, что горох - строгий самоопылитель, и это резко снижало возможность заноса нежелательной пыльцы; во-вторых, в то время имелось достаточное число сортов гороха, различавшихся по нескольким наследуемым признакам.

Мендель получил от различных ферм 34 сорта гороха. После двух годовой проверки, сохраняют ли они свои признаки неизменными при размножении без скрещивания, он отобрал для экспериментов 22 сорта.

Мендель начал с опытов по скрещиванию сортов гороха, различающихся по одному признаку (моногибридное скрещивание). Во всех опытах с 7 парами сортов было подтверждено явление доминирования в первом поколении гибридов, обнаруженное Сажрэ и Нодэном. Мендель ввел понятие доминантного и рецессивного признаков , определив доминантными признаки , которые переходят в гибридные растения совершенно неизменными или почти неизменными, а рецессивными те, которые становятся при гибридизации скрытыми. Затем Мендель впервые сумел дать количественную оценку частотам появления рецессивных форм среди общего числа потомков при скрещиваний.

Для дальнейшего анализа природы наследственности, Мендель изучил ещё несколько поколении гибридов, скрещиваемых между собой. В результате получили прочное научное обоснование следующие обобщения фундаментальной важности:

1. Явление неравнозначности наследственных признаков.

2. Явление расщепления признаков гибридных организмов в результате их последующих скрещиваний. Были установлены количественные закономерности расщепления.

3. Обнаружение не только количественных закономерностей расщепления по внешним, морфологическим признакам, но и определение соотношения доминантных и рецессивных задатков среди форм, с виду не отличных от доминантных, но являющимися смешанными по своей природе.

Таким образом, Мендель вплотную подошел к проблеме соотношения между наследственными задатками и определяемыми ими признаками организма. За счет пере комбинации задатков (впоследствии эти задатки В. Иоганнсен назвал генами.), при скрещивании образуются зиготы, несущие новое сочетание задатков, чем и обусловливаются различия между индивидуумами. Это положение легло в основу фундаментального закона Менделя - закона чистоты гамет.

Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, определили развитие науки более чем на четверть века.

Развитие биометрических методов изучения наследственности.

Индивидуальные различия даже между близкородственными организмами вовсе не обязательно связаны с различием в генетической структуре этих особей; они могут быть связанны с неодинаковыми условиями жизни. Поэтому делать заключения о генетических различиях можно только на основании анализа большого числа особей. Первым, кто привлек внимание к математическим закономерностям в индивидуальной изменчивости, был бельгийский математик и антрополог А. Кэтлэ. Он явился одним из основателей статистики и теории вероятностей.

В то время важный вопрос был о возможности передачи по наследству уклонений от средней количественной характеристики признака, наблюдаемых у отдельных индивидуумов. Выяснением этого вопроса занялись несколько исследователей. По своей значимости выделились работы Гальтона, который собрал данные о наследовании роста у человека. Затем Гальтон изучил наследование величины венчика цветка у душистого горошка и пришел к выводу, что потомству передается лишь небольшая часть уклонений, наблюдаемых у родителей. Гальтон попытался придать своему наблюдению математическое выражение, положив начало большой серии работ по математико-статистическим основам наследования.

Последователь Гальтона К. Пирсон продолжил эту работу в более широких масштабах. Наиболее серьезное и ставшее классическим исследование вопросов, поднимавшихся Гальтоном и Пирсоном и их последователей, было выполнено в 1903 -1909 гг. В. Иоганнсеном, обратившим главное внимание на изучение генетически однородного материала. Исходя из полученных анализов, Иоганнсеном дал точное определение генотипа и фенотипа и заложил основы современного понимания роли индивидуальной изменчивости.

Цитологические основы генетики

В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль, что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные частицы свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Изучение хромосом у животных и растений привело к выводу, что каждый вид животных существ характеризуется строго определенным числом хромосом.

Открытый Э. ван Бенедоном (1883) факт, что число хромосом в клетках тела вдвое больше, чем в половых клетках, можно объяснить: поскольку при оплодотворении ядра половых клеток сливаются и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворения должно противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое.

В 1900 г. независимо друг от друга К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом.

Тайна передачи признаков по наследству всегда привлекала людей. В I веке до н. э. древнеримский философ Лукреций заметил, что дети иногда походят на своих дедушек или прадедушек. Столетием спустя Плиний Старший писал: «Часто бывает так, что у здоровых родителей рождаются дети-калеки, а у родителей-калек - здоровые дети или дети с тем же уродством, в зависимости от случая». Еще первые земледельцы поняли, что некоторые признаки зерновых, например пшеницы, или домашних животных, например овец, передаются по наследству, поэтому путем отбора можно создавать новые сорта растений и новые породы животных. И сейчас мы порой восхищенно восклицаем: «У него улыбка матери!» или «У нее характер отца!», особенно когда хотим сказать, что эти черты достались детям по наследству от родителей 1 .

Несмотря на то что о наследственности люди знали давно, природа этого механизма оставалась для них скрытой. Невозможно было дать понятное объяснение наследственности или определить законы передачи тех или иных признаков. Самое первое и простое, приходящее на ум, - предположение, что признаки родителей в равной степени «перемешиваются» в детях, потому дети должны представлять собой нечто среднее. Это все равно, что взять банки с красной и белой красками, перемешать их и получить розовый цвет. Отсюда может возникнуть предположение, что не только простые признаки (цвет волос и глаз или форма носа), но и сложные, вроде манеры поведения или черт характера, будут отражать нечто среднее между признаками родителей. Однако при дальнейшем смешении красок никогда не получится чистый цвет; из розовой краски нельзя получить чисто белую или чисто красную. Уже древние римляне около 2 тысяч лет назад понимали, что наследственные признаки передаются каким-то другим способом. Кроме того, на такие сложные признаки, как характер или умственные способности, огромное влияние оказывает внешняя среда, в частности воспитание.

В теории эволюции Чарльза Дарвина передача признаков по наследству была ключевым элементом. Скотоводы выводят новые породы домашних животных методом искусственного отбора, природа же создает новые виды посредством естественного отбора. Если бы полезные для выживания признаки не наследовались, не было бы эволюции. Однако при объяснении механизма наследственности Дарвин придерживался ошибочной теории пангенезиса. Как мы уже видели, согласно этой гипотезе, каждый орган производит крохотные элементы (пангены), которые соединяются в гонадах (половых железах) и распределяются по гаметам (сперматозоидам или яйцеклеткам). В каждой гамете, таким образом, должны присутствовать пангены пальцев, волос, зубов и т. д. Эта теория, довольно широко распространенная в XIX веке, иногда и в наши дни оказывает влияние на обыденные представления о наследственности.



Очевидно, что все первые научные гипотезы о наследственности оставались умозрительными догадками. И только в середине XIX века эксперименты Грегора Менделя предоставили материал, позволивший впервые подойти к правильному пониманию механизма наследственности.

Открытия Менделя

Грегор Мендель первым приблизился к разгадке древней тайны. Он был монахом в Брюннском монастыре (ныне Брно, Чехия) и помимо преподавательской деятельности занимался на досуге опытами по скрещиванию садового гороха. Его доклад на эту тему, опубликованный в 1865 году, не встретил широкого признания. Несмотря на то что за шесть лет до этого пристальное внимание всего ученого мира привлекла теория естественного отбора, те немногие исследователи, что прочли статью Менделя, не придали ей особого значения и не связали изложенные в ней факты с теорией происхождения видов. И только в начале XX века три биолога, проводя эксперименты над разными организмами, получили схожие результаты, подтвердив гипотезу Менделя, который посмертно прославился как основоположник генетики.

Почему же Менделю удалось то, что не удавалось большинству других исследователей? Во-первых, он исследовал только простые, четко определяемые признаки - например, цвет или форму семян. Выделить и опознать простые признаки, которые могут передаваться по наследству, нелегко. Такие признаки, как высота растения, а также интеллект или форма носа человека, зависят от множества факторов, и проследить законы их наследования очень трудно. Внешне заметные и при этом независимые от других признаки встречаются довольно редко. Кроме того, Мендель наблюдал передачу признака на протяжении нескольких поколений. И что, пожалуй, самое важное, он записывал точное количество особей с тем или иным признаком и проводил статистический анализ данных.

В классических экспериментах по генетике всегда используют два сорта или более, две разновидности, или линии, одного и того же биологического вида, отличающиеся друг от друга по таким простым признакам, как окраска цветка растений или окрас меха животных. Мендель начинал с чистых линий гороха, то есть с линий, которые на протяжении нескольких поколений скрещивались исключительно друг с другом и потому постоянно демонстрировали только одну форму признака. О таких линиях говорят, что они размножаются в чистоте. Во время эксперимента Мендель скрещивал между собой особи из разных линий и получал гибриды. При этом на рыльце растения с удаленными пыльниками из одной линии он переносил пыльцу растения из другой линии. Предполагалось, что признаки разных родительских растений в гибридном потомстве должны смешаться между собой. В одном из экспериментов (рис. 4.1) Мендель скрестил чистый сорт с желтыми семенами и чистый сорт с зелеными семенами. В записи эксперимента крестик означает «скрещивается с...», а стрелка указывает на следующее поколение.

Можно было предположить, что у гибридного поколения будут желто-зеленые семена или некоторые желтые, а какие-то зеленые. Но образовались только желтые семена. Казалось бы, что признак «зеленый» совсем исчез из поколения F 1 (буквой F обозначаются поколения, от латинского слова filius - сын). Затем Мендель посадил семена из поколения F 1 и скрестил растения между собой, получив таким образом второе поколение F 2 . Интересно, что признак «зеленый», исчезнувший в первом гибридном поколении, проявился вновь: у одних растений из поколения F 2 были желтые семена, а у других зеленые. Такие же результаты дали другие эксперименты по скрещиванию растений с разными проявлениями признака. Например, когда Мендель скрещивал чистый сорт гороха с фиолетовыми цветками и чистый сорт с белыми цветами, в поколении F 1 все растения оказывались с фиолетовыми цветками, а в поколении F 2 у одних растений цветки были фиолетовые, а у других белые.

В отличие от своих предшественников, Мендель решил подсчитать точное количество растений (или семян) с тем или иным признаком. Скрещивая растения по цвету семян, он получил в поколении F 2 6022 желтых семени и 2001 зеленое семя. Скрещивая растения по окраске цветков, он получил 705 фиолетовых цветков и 224 белых. Эти цифры еще ничего не говорят, и в похожих случаях предшественники Менделя опускали руки и утверждали, что ничего разумного по этому поводу сказать нельзя. Однако Мендель заметил, что отношение этих чисел близко к пропорции 3:1, и это наблюдение подтолкнуло его к простому выводу.

Мендель разработал модель - гипотетическое объяснение того, что происходит при скрещивании. Ценность модели зависит от того, насколько хорошо она объясняет факты и предсказывает результаты экспериментов. Согласно модели Менделя, в растениях имеются некие «факторы», определяющие передачу наследственных признаков, причем каждое растение имеет по два фактора для каждого признака - по одному от каждого родителя. Кроме того, один из этих факторов может быть доминантным, то есть сильным и видимым, а другой - рецессивным, или слабым и невидимым. Желтая окраска семян должна быть доминантной, а зеленая - рецессивной; фиолетовый цвет доминантен по отношению к белому. Такое свойство «факторов наследственности» находит отражение в записи генетических экспериментов: прописная буква означает доминантный признак, а строчная - рецессивный. Например, желтую окраску можно обозначить как Ү, а зеленую как у. Согласно современной точке зрения, «факторы наследственности» - это отдельные гены, определяющие цвет или форму семян, и мы называем различные формы гена аллелями или аллеломорфами (морф - форма, аллелон - друг друга).

Рис. 4.1. Объяснение результатов, полученных Менделем. Каждое растение имеет две копии гена, определяющего цвет, но передает своим гаметам по одной из этих копий. Ген Yдоминантен по отношению к гену у, поэтому семена всех растений поколения F t с набором генов Yy желтые. В следующем поколении возможны четыре комбинации генов, три из которых дают желтые семена и одна - зеленые

На рис. 4.1 показан ход экспериментов Менделя, а также приведены выводы, к которым он пришел. Чистая линия гороха с желтыми семенами должна обладать двумя факторами Y(YY), а чистая линия гороха с семенами зеленого цвета - двумя факторами у (уу). Так как оба фактора в родительских растениях одинаковы, мы говорим, что они гомозиготны или что эти растения - гомозиготы. Каждое из родительских растений дает потомству по одному фактору, определяющему цвет семян, поэтому все растения поколения F t имеют факторы Yy. Два фактора цвета у них разные, поэтому мы говорим, что они гетерозиготны или что эти растения - гетерозиготы. Когда гетерозиготные растения скрещиваются между собой, каждое дает по два вида гамет, половина которых переносит фактор Y, а другая половина - фактор у. Гаметы объединяются случайным образом и дают четыре вида комбинаций: YY, Yy, уҮ или уу. Зеленые семена образуются только при последней комбинации, так как оба фактора в ней рецессивные; при других комбинациях получаются желтые семена. Так объясняется отношение 3:1, которое наблюдал Мендель.

Родословные

Кроме подсчета количества растений и животных с теми или иными признаками, полученными при случайном скрещивании, полезно исследовать механизм наследственности на примере родословных (людей или домашних животных). Родословную можно изобразить в виде условной схемы:

Женщин (и самок животных) обозначают кружками, а мужчин (самцов животных) квадратами; лиц неизвестного пола (таких, как дальние родственники, умершие в младенчестве) - ромбами. Горизонтальная линия, соединяющая мужчину и женщину, означает брак или спаривание у животных. Дети обозначаются как ответвления от общей горизонтальной линии, идущей от пары; порядок рождения показан слева направо. Заметьте, что первая пара, с которой начинается родословная, считается первым поколением, их дети будут вторым поколением, внуки - третьим и т. д. Близнецы обозначаются линиями, идущими от одной точки на родительской линии, а однояйцевые близнецы - соединяющей их линией; аборт или выкидыш - закрашенным кружком. Если в родительской паре не указан отец, то это значит, что он неизвестен.

Если по родословной исследуют определенный признак, то индивиды, обладающие таким признаком, обозначаются особым знаком или цветом. Точкой обозначают индивида, который является носителем этого признака, но не проявляет его. Теперь с помощью родословной мы постараемся проиллюстрировать принципы Менделя, которые он вывел на основе своих экспериментов. Есть такой признак, как альбинизм, то есть отсутствие пигментов, определяющих цвет кожи, волос или глаз. Альбиносы встречаются среди представителей всех рас, а среди североамериканцев европейского происхождения - с частотой один на 20 тысяч. У коренных индейцев альбинизм сравнительно редок, но среди индейцев хопи и зуни один альбинос приходится на 200-300 человек, потому что эти народы считают их наделенными особой силой и поощряют их воспроизводство.

Если два альбиноса вступают в брак, то все их дети также рождаются альбиносами. В одной семье была такая родословная:

Однако такие случаи редки, и обычно альбиносы вступают в брак с лицами, имеющими нормальную пигментацию. Если у их партнера в родословной не было случаев альбинизма, то дети от такого брака рождаются нормальными:

Исходя из похожих родословных можно вывести одно важное следствие, имеющее обоснование в законах Менделя.

В данном случае один признак не смешивается с другим. Все лица в последующих поколениях имеют нормальную пигментацию; среди них нет альбиносов с темноватой кожей или обычных людей со светловатой кожей. Похоже, что признак альбинизма исчез, но другая схема показывает, что это не так.

На примере таких браков видно, что признак не исчез; он только каким-то образом оказался скрытым и проявился в последующих поколениях. Если оба родителя альбиносы, то и дети у них альбиносы, то есть у них нет даже возможности передать своим детям какой-то другой признак. Если же альбинос один из родителей, то дети от такого брака могут передать признак альбинизма последующим поколениям, даже если внешне они выглядят нормально. Таким образом, организм может переносить определенные признаки, даже если они явно не выражены.

Модель Менделя объясняет все описанные случаи. Во-первых, логично предположить, что различие между альбинизмом и нормальной окраской кожи зависит от одного и того же гена. Во-вторых, предположим, что у каждого человека имеется две копии одного и того же гена, по одной от каждого родителя. В-третьих, гены, например, ответственные за пигментацию кожи, имеют два аллеля: доминантный - нормальной окраски, который обозначим А, и рецессивный - альбинизма, который обозначим а. Набор генов отдельной особи называется генотипом. Таким образом, обычный человек (у которого не было предков-альбиносов) должен иметь генотип АА, а альбинос - генотип аа. В обоих случаях это генотипы гомозигот. Обычные люди всегда передают только ген А, альбиносы - только ген а, поэтому дети обычного человека и альбиноса будут гетерозиготами с генотипом Аа. Внешне они выглядят как люди с генотипом АА, или, по терминологии генетики, у них одинаково выраженные признаки, то есть одинаковый фенотип. Три генотипа можно охарактеризовать следующим образом: гомозиготный доминантный АА, гомозиготный рецессивный аа и гетерозиготный Аа. Если оба родителя гетерозиготны, как во втором примере, то большинство их детей, скорее всего, будут нормальными, но некоторые могут оказаться альбиносами. На примере опытов Менделя мы, однако, теперь знаем, что понятий «большинство» и «некоторые» недостаточно, и желательно подсчитать точное количество. Правда, законы больших чисел, используемые в экспериментах над горохом, среди людей учитывать трудно, потому что в семьях бывает не так уж много детей, но зато можно исследовать другие подобные браки. Рассмотрев все похожие случаи, мы опять обнаруживаем отношение, близкое к пропорции 3:1 - три нормальных ребенка к одному альбиносу, - точно такое же, какое вывел Мендель в своих опытах с горохом. Мы уже знакомы с моделью Менделя, поэтому можем объяснить, почему получается такое соотношение. Во время образования гамет два гена из каждой пары расходятся, и в гаметах содержится по одному гену. Согласно менделевскому закону расщепления в каждом отцовском сперматозоиде находится один аллель, поэтому половина сперматозоидов содержит аллели А, другая половина - аллели а. Точно так же материнские яйцеклетки содержат либо аллель А, либо аллель а. Оплодотворение происходит случайным образом, поэтому возможны четыре комбинации:

яйцеклетка А и сперматозоид А: генотип АА;

яйцеклетка А и сперматозоид а: генотип Аа;

яйцеклетка а и сперматозоид А: генотип Аа;

аа.

Три первые комбинации дают нормальную пигментацию, поэтому альбиносы рождаются только в последнем случае, то есть в одном случае из четырех. Эта модель объясняет, почему в браке нормального человека и альбиноса всегда рождаются дети с нормальным цветом кожи. Второе поколение - гетерозиготы; гетерозиготами будут и большинство представителей следующих поколений. Все они передают ген а половине своих гамет, но так как этот ген при оплодотворении сочетается только с геном А, то появление генотипа аа невозможно.

Осталось рассмотреть еще одну схему, которая подтвердит нашу теорию.

Что можно сказать о третьем поколении? Из анализа предыдущих случаев нам известно, что нормальный человек во втором поколении (допустим, это мужчина) имеет генотип Аа. Следовательно, половина его сперматозоидов переносят ген А и половина - ген а. У его жены-альбиноса генотип аа, поэтому все ее яйцеклетки переносят ген а. В данном случае возможны только две комбинации:

яйцеклетка а и сперматозоид А: генотип Аа;

яйцеклетка а и сперматозоид а: генотип аа.

Отсюда понятно, что вероятность рождения ребенка с нормальной кожей равна 50%. Вероятность рождения альбиноса также равна 50%. Заметим, что простая модель, которой мы руководствовались, основана всего лишь на нескольких довольно разумных посылках:

♦ каждый организм содержит две копии одного и того же гена;

♦ некоторые аллели могут быть доминантными или рецессивными по отношению к другим:

♦ при образовании гамет парные гены расходятся;

♦ при образовании зигот гаметы соединяются случайным образом.

Модель помогает объяснить результаты экспериментов и исследований, поэтому можно сказать, что она согласуется с реальностью.

Биография

Грегор Иоганн Мендель (Gregor Johann Mendel) – выдающийся чешский естествоиспытатель. Он родился в Австрийской империи в простой крестьянской семье. При крещении он получил имя Иоганн.

Изучением природы мальчик увлекался с детства, когда еще работал, сперва помощником садовника, а затем – садовником. Проучившись некоторое время в институте Ольмюца, в философских классах, он в $1843$ году постригся в монахи и принял имя Грегор. Дальше с $1844$ по $1848$ год Грегор Мендель учился в Брюннском богословском институте и стал священником. Во время учебы он самостоятельно изучал многие науки, изучал в Венском университете естественную историю.

Именно в Вене Грегор Мендель увлекся исследованиями процессов гибридизации и статистическими соотношениями гибридов. Мендель уделял особое внимание вопросам изменений качественных признаков у растений. Объектом экспериментов он выбрал горох, который можно было вырастить в монастырском саду. Именно наблюдения за результатами этих исследований и легли в основу знаменитых «законов Менделя».

Воодушевленный первыми успехами, Мендель перенес свои эксперименты на растение семейства астровых (скрещивал разновидности ястребинки) и проводил скрещивания разновидностей пчел. Результаты экспериментов не совпали с результатами опытов с горохом. Тогда еще не знали, что механизм наследования признаков у этих растений и животных отличается от механизма наследования у гороха.

Замечание 1

Грегор Мендель был разочарован в биологической науке. После его назначения настоятелем монастыря, он больше не занимался наукой. Но его заслугой является то, что он впервые выявил и описал статистические закономерности наследования признаков у гибридов. Ознакомимся с ними детальнее.

Первый закон Менделя

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха - с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения , который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков . Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Второй закон Менделя

Проводя дальнейшие эксперименты с гибридами первого поколения, Мендель обнаружил, что при дальнейшем скрещивании гибридов первого поколения между собой гибриды второго поколений отличаются расщеплением признаков с устойчивым постоянством. Сегодня этот закон формулируют таким образом:

Определение 1

«После скрещивания двух гетерозиготных потомков первого поколения между собой, наблюдается расщепление во втором поколении в определенном числовом соотношении: по фенотипу $3:1$, по генотипу $1:2:1$».

Он получил название закона расщепления . Он означает, что рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и потом проявляется во втором гибридном поколении.

Третий закон Менделя

В первых опытах Грегор Мендель принимал во внимание всего одну пару альтернативных признаков. Он заинтересовался вопросом, что если взять во внимание несколько признаков. Признаки начали комбинироваться между собой и поначалу вызвали у ученого замешательство. Но при более детальном рассмотрении, Менделю удалось вывести закономерность расщепления. Оказалось, что гибриды первого поколения однообразны, а во втором поколении признаки по фенотипу расщепляются в пропорции $9:3:3:1$, независимо от другого признака. Этот закон был назван законом независимого наследования . Сегодня его формулировка выглядит так:

Определение 2

«При скрещивании двух особей, которые отличаются друг от друга по нескольким парам (двум или более) альтернативных признаков, гены и соответствующие им признаки наследуются друг от друга независимо и могут комбинироваться во всех возможных сочетаниях (подобно как при моногибридном скрещивании)».

Закономерности, открытые Менделем предвосхитили начало новой науки – генетики.

ГЛАВА 8. Разгадать шифр Бога: открытие генетики и ДНК

В один прекрасный день на заре цивилизации, на прекрасном греческом острове Кос, в кристально чистых водах Эгейского моря молодая женщина, представительница благородного рода, незаметно проникла через черный ход в храм из камня и мрамора - Асклепион, - чтобы обратиться с просьбой к одному из первых и самых знаменитых в мире врачей. В отчаянной надежде получить совет она смущенно поведала Гиппократу о своей необычной проблеме. Женщина недавно родила мальчика. И хотя он был здоровым и пухленьким, Гиппократу, чтобы поставить диагноз, достаточно было взглянуть на малыша, закутанного в пеленки, и его белокожую мать. Темный цвет кожи младенца красноречиво свидетельствовал о пылкой страсти матери к африканскому торговцу. Если бы информация о неверности получила огласку, разразился бы скандал, сплетни распространились по острову со скоростью лесного пожара, вызвав нешуточную ярость мужа.

Но Гиппократ - знавший о наследственности и генетике ровно столько, сколько мог кто-либо знать в V веке до н. э. - тут же предложил объяснение. Некоторые черты детей действительно могут быть унаследованы от отцов, но не учитывалась концепция «материнских впечатлений». В соответствии с ней, дети могли приобретать черты, возникающие в зависимости от того, на что их матери смотрели во время беременности. А значит, как убедил свою посетительницу Гиппократ, ребенок, скорее всего, приобрел негроидные черты во время беременности, поскольку будущая мать слишком пристально изучала портрет эфиопа, который - так уж вышло - висел на стене в ее спальне.

От загадок к генетической революции

С первых дней цивилизации до завершения индустриальной революции представители разных слоев общества с мужеством - порой граничащим с глупостью - пытались раскрыть тайны наследственности. Даже сегодня мы изумляемся тому, как свойства передаются из поколения в поколение. Кому из нас не знакомо удивление при взгляде на собственного ребенка или родного брата в попытке разгадать, от кого ему досталась та или иная черта: чуть искривленная улыбка, цвет кожи, редкий ум или его отсутствие, перфекционизм или склонность к лени? Кто не задавался вопросом, почему ребенок взял именно эти черты у матери, именно эти - у отца, или почему братья и сестры порой так непохожи друг на друга?

И это только самые очевидные вопросы. А как быть с чертами, которые в одном поколении словно исчезают, а затем проявляются у внуков? Могут ли родители передавать детям черты, «приобретенные» в течение жизни: навыки, знания, даже травмы? Какую роль играет окружение? Почему в каких-то семьях одна и та же болезнь преследует все поколения, а другим достаются крепкое здоровье и невероятное долголетие? И, пожалуй, самый тревожный вопрос: как именно передается «бомба замедленного действия», которая определяет, от чего и когда мы умрем?

Вплоть до XX века все эти загадки можно было обобщить в двух простых вопросах. Контролируется ли наследственность какими-то правилами? И как?

Удивительно, но, даже не понимая, как или почему определенные черты передаются из поколения в поколение, человечество долгое время как-то справлялось с этими загадочными явлениями. Тысячелетиями - в пустынях, степях, лесах и долинах - люди скрещивали разные растения и разных животных, чтобы получить желаемые признаки, а иногда и новые организмы. Рис, кукуруза, овцы, коровы, лошади становились крупнее, сильнее, тверже, вкуснее, дружелюбнее и продуктивнее. Лошадь женского пола и осел мужского пола произвели мула, который был одновременно сильнее матери и умнее отца. Не понимая, как именно это работает, люди использовали наследственность для создания сельского хозяйства - богатого и надежного источника еды, который способствовал подъему цивилизации и преображению человечества из горстки кочевников в миллиардную популяцию.

Лишь в последние 150 лет (а точнее, 60) мы начали в этом разбираться. Поняли не все, но достаточно, чтобы расшифровать базовые законы, разобрать на части, указать саму суть наследственности и применить новые знания, вызвав революционные изменения практически во всех направлениях медицины. И, пожалуй, этот прорыв больше, чем любой другой, похож на медленный взрыв. Открытие наследственности и того, как ДНК, гены и хромосомы позволяют разным характеристикам передаваться из поколения в поколение, - долгая работа, которая во многом еще не завершена.

Даже после 1865 г., когда первый революционный эксперимент показал, что наследственностью действительно управляет набор правил, понадобилось еще больше открытий - от открытия генов и хромосом в конце XIX века до определения структуры ДНК в 1950-е, - чтобы ученые начали понимать, как она на самом деле работает. Полтора века ушло на то, чтобы выяснить, как те или иные черты передаются от родителя к ребенку и как крошечная яйцеклетка без каких-либо характеристик способна вырасти и превратиться в человека с 100 трлн клеток и множеством индивидуальных особенностей.

Но мы все еще в начале пути. Хотя открытие генетики и ДНК и было революционным, оно также отворило ящик Пандоры, показав массу возможностей, будоражащих разум и вызывающих массу вопросов: от определения генетических причин заболеваний и генетической терапии, способной их лечить, до «персонализированной» медицины, в которой лечение зависит от уникального генетического профиля пациента. Не говоря уже о многочисленных связанных с генетикой революциях, включая использование ДНК для расследования преступлений, составления родословных, а когда-нибудь - кто знает - для того, чтобы наделять детей теми или иными талантами по нашему усмотрению.

И через много лет после эпохи Гиппократа врачей все так же интриговала идея «материнских впечатлений». Об этом говорят три случая, имевшие место в XIX - начале XX века.

Женщина на седьмом месяце беременности приходила в ужас при виде горящего вдалеке дома. Каждый раз ей становилось страшно от мысли, что это может быть ее дом. Дом ее не сгорел, но пугающий образ пламени оставался у нее «постоянно перед глазами» в течение беременности. У родившейся через несколько месяцев девочки на лбу обнаружилось красное пятно, по форме напоминавшее языки пламени.

Беременная женщина, увидев ребенка с заячьей губой, так сильно переживала из-за этого, что внушила себе: ее ребенок появится на свет с таким же недостатком. Так и вышло: 8 месяцев спустя ее малыш родился с заячьей губой. И это не вся история. Случай получил огласку, и на младенца пришли посмотреть несколько беременных женщин. Три из них позже также родили детей с заячьей губой.

Еще одна женщина на седьмом месяце беременности была вынуждена поселить в своем доме соседскую девочку, так как ее мать тяжело заболела. Девочка часто помогала хозяйке с домашними делами, и женщина то и дело бросала взгляд на ее средний палец, сохранившийся лишь частично из-за несчастного случая в прачечной. В результате женщина родила ребенка, который был полностью здоров - не считая отсутствия среднего пальца на левой руке.

Разрушение мифов: загадка отсутствия безглавых младенцев

Учитывая, как далеко шагнула наука за последние 150 лет, можно вообразить, как наши предки объясняли механизм наследования разных черт. Так, например, врачи времен Гиппократа считали, что во время зачатия мужчина и женщина отдают ребенку «крошечные частички» каждого органа, и смешение этих частичек позволяет передавать те или иные черты. Но теория Гиппократа - позже названная пангенезисом - была вскоре опровергнута греческим философом Аристотелем. Она не объясняла, как черты могут передаваться через поколение. У Аристотеля, конечно, были свои оригинальные идеи. Например, он верил, что дети получают физические черты через менструальную кровь матери, а душа к ним приходит через отцовскую сперму.

Поскольку микроскопов или других научных приборов тогда не было, неудивительно, что вопрос наследственности оставался тайной на протяжении более 2000 лет. Даже в XIX веке люди в большинстве своем верили, как и Гиппократ, в «доктрину материнского впечатления»: идею о том, что на черты еще не родившегося ребенка может повлиять то, что женщина видит во время беременности, особенно если это какие-то шокирующие или пугающие вещи. В медицинских журналах и книгах сообщалось о сотнях случаев, когда женщины, испытавшие эмоциональный стресс от увиденного (обычно это были увечья или уродства), позже рожали детей, у которых обнаруживались аналогичные изъяны. Правда, уже в начале XIX века зародились сомнения в этой теории. «Если наблюдение за чем-то шокирующим может производить такой эффект, - писал шотландский автор “Домашнего лечебника” Уильям Бухан, - то сколько же обезглавленных младенцев должно было родиться во Франции в период жестокого правления Робеспьера?»

Но многие странные мифы сохранились до середины XIX века. Например, был очень популярен слух о том, что у мужчин, потерявших конечности в результате пушечных ранений, рождались дети без рук или ног. Другое распространенное заблуждение - что «приобретенные черты» (навыки или знания, которые человек накапливает в течение жизни) могут быть переданы ребенку. Один автор в конце 1830-х писал о французе, который научился говорить по-английски за очень короткое время, должно быть, унаследовав свой талант от англоговорящей бабушки, которую ни разу в жизни не видел.

А один писатель в XIX веке уверенно заявлял, будто ребенок получает «опорно-двигательные органы» от отца, а «внутренние, или жизненно важные» - от матери. Стоит отметить, что основанием для этой широко распространенной теории стала внешность мулов.

Первые сдвиги: микроскопы помогают обнаружить первопричину

Вплоть до конца XIX века, несмотря на научные достижения, ставшие основой революционных прорывов во многих областях медицины, наследование рассматривали как переменчивую силу природы. При этом ученые никак не могли прийти к единому мнению о том, откуда она возникает, и уж точно не понимали, как этот процесс происходит.

Первые подвижки в формировании теории наследственности появились в начале XIX века, частично благодаря совершенствованию микроскопа. С момента, когда датские мастера по изготовлению очков Ганс Янсен и его сын Захарий изобрели свой первый микроскоп, прошло более 200 лет, и к началу XIX века технические усовершенствования наконец позволили ученым пристальнее взглянуть на «место действия» - клетку. Мощный сдвиг произошел в 1831 г., когда шотландский ученый Роберт Броун обнаружил, что многие клетки содержат крошечную темную центральную структуру, которую он назвал ядром. И хотя роль, которую ядро клетки играло в вопросах наследственности, оставалась неизвестной еще несколько десятилетий, Броун по крайней мере нашел место действия изучаемых процессов.

Почти десять лет спустя британский врач Мартин Бэрри изучил это место действия еще глубже. Он выяснил, что оплодотворение происходит, когда клетка мужской спермы попадает в женскую яйцеклетку. Да, сегодня это звучит банально, но всего лишь несколько десятилетий назад был популярен миф о том, что каждая неоплодотворенная яйцеклетка содержит крошечную «заготовку» человека, и задача спермы - пробудить ее к жизни. Более того, вплоть до середины XIX века большинство людей не подозревали, что в зачатии участвуют только один сперматозоид и одна яйцеклетка. А без знания этого простого равенства (1 яйцеклетка + 1 сперматозоид = 1 ребенок) были невозможны даже первые младенческие шаги к истинному пониманию наследственности.

Наконец, в 1856 г. появился человек, который не только знал об этом равенстве, но и был готов посвятить десять лет жизни разгадке тайны. И хотя его работа может производить впечатление полной идиллии (он трудился в уютном саду на заднем дворе), его эксперименты были, скорее всего, невероятно трудоемкими. Делая то, на что никто раньше даже не решался, он вырастил десятки тысяч гороховых побегов и скрупулезно задокументировал, как их маленькие ростки вели себя в каждом поколении. Позже он не без гордости писал: «Безусловно, чтобы взять на себя такой масштабный труд, нужна определенная смелость».

Но к тому моменту, когда Грегор Мендель закончил в 1865 г. свою работу, он ответил на вопрос, который человечество задавало тысячелетиями: наследственность обусловлена не случайностью или изменчивостью, а определенными правилами. Приятный бонус - помимо кладовой, набитой запасами гороха - заключался в том, что Мендель основал науку под названием генетика.

Веха № 1

От гороха к научным принципам: Грегор Мендель и открытые им законы наследственности

Родившийся в 1822 г. в семье фермеров в моравской деревне (которая сейчас находится на территории Чехии), Иоганн Мендель может считаться либо самым невероятным священником в истории религии, либо самым невероятным исследователем в истории науки. А возможно, и тем и другим. Его интеллектуальные способности несомненны: Мендель так блестяще учился в юности, что один из его учителей рекомендовал ему посетить Августовский монастырь в ближайшем городе Брюнне. Это был обычный для тех времен способ, к которому прибегали бедняки, чтобы получить образование. Там он принял новое имя Грегор. К моменту, когда Мендель получил сан священника в 1847 г. (в возрасте 26 лет), он производил впечатление человека, подходящего для научной деятельности. Мендель с удовольствием преподавал в школе физику и математику, однако провалил экзамен на получение лицензии учителя. Чтобы реабилитироваться после такой неудачи, он отправился в Венский университет на четыре года, где изучал множество разнообразных предметов, включая курсы по математике и физике (которые преподавал Кристиан Допплер) и по естественным наукам. Вернувшись в аббатство в 1853 г., Мендель получил должность преподавателя в высшей школе Брюнне и в 1856 г. предпринял попытку сдать экзамен на лицензию во второй раз.

И снова его провалил.

Хотя сдать экзамен на должность преподавателя Мендель так и не смог, полученное им образование - включая курсы по выращиванию фруктов, анатомии и физиологии растений и экспериментальным методам - было, казалось, предназначено для чего-то куда более важного. Как мы знаем сегодня, уже в 1854 г., за два года до того, как он провалил свой второй преподавательский экзамен, Мендель проводил эксперименты в саду аббатства, где выращивал разные виды гороха, анализировал их развитие и планировал еще более великие эксперименты, которые провел всего через пару лет.

Эврика: 20 тыс. гибридов, простая пропорция и три важнейших закона

О чем размышлял Мендель, когда начинал свой знаменитый эксперимент с горохом в 1856 г.? Прежде всего, эта идея пришла к нему не из ниоткуда. Как это обычно бывает, скрещивание разных видов растений и животных долгое время представляло интерес для фермеров Моравии: они пытались усовершенствовать качество своих декоративных цветочных растений, фруктовых деревьев и овечьей шерсти. И хотя эксперименты Менделя были, возможно, отчасти обусловлены желанием помочь местному сельскому хозяйству, его также явно интриговали серьезные вопросы наследственности. Но если он когда-либо пытался делиться с кем-нибудь своими идеями, то, скорее всего, встречал недоумение. В то время ученые не предполагали, что индивидуальные характеристики могут быть предметом изучения. В соответствии с существовавшей тогда теорией развития, они смешиваются из поколения в поколение и их нельзя изучать по отдельности. Так что сама идея эксперимента Менделя (сравнение особенностей гороха в масштабах многих поколений) была по тем временам эксцентричной (никому это раньше и в голову не приходило) и - что не случайно - озарением гения.

При этом Мендель всего лишь задавал те же вопросы, которые многие уже задавали до него: почему определенные характеристики - будь то блестящая дедушкина лысина или вокальные способности тети - исчезают в одном поколении и снова появляются в другом? Почему какие-то черты случайным образом проявляются и исчезают, а другие, как сформулировал Мендель, появляются вновь с «поразительной регулярностью»? Чтобы изучить этот вопрос, Менделю был нужен организм, обладающий двумя ключевыми свойствами: характеристиками, которые можно легко обнаружить и количественно проанализировать, и коротким репродуктивным циклом, чтобы новые поколения могли появляться относительно быстро. И вот фортуна распорядилась так, что нужный организм Мендель обнаружил в собственном дворе: это был Pisum sativum, обычный горох. Начав выращивать его в саду аббатства в 1856 г., он сосредоточился на 7 характеристиках: оттенок цветков (фиолетовый или белый), расположение цветков (на стебле или на верхушке), цвет семян (желтый или зеленый), форма семян (округлая или сморщенная), цвет стручка (зеленый или желтый), форма стручка (наполненная или сморщенная), высота побега (большая или маленькая).

В следующие 8 лет Мендель вырастил тысячи растений, тщательно проанализировав и распределив по категориям их характеристики в рамках многих поколений. Это был невероятный труд: за один только последний год работы он вырастил 2500 растений второго поколения, задокументировав всего более 20 тыс. гибридов. И хотя он завершил свой анализ лишь к 1863 г., интригующие находки он обнаруживал почти с самого начала.

Чтобы по-настоящему оценить открытие Менделя, обратите внимание на один из его простейших вопросов: почему при скрещивании гороха с фиолетовыми и с белыми цветками получались растения исключительно с фиолетовыми цветками; а при скрещивании получившихся растений с фиолетовыми цветками среди новых растений большинство было с фиолетовыми цветками, а несколько - с белыми? Иными словами, где именно в том первом поколении растений с фиолетовыми цветками была «инструкция» спрятать белые цветки? То же произошло и со всеми остальными характеристиками. При скрещивании растений с желтыми и зелеными плодами у всех «потомков» первого поколения плоды были желтого цвета; но когда эти растения скрещивали между собой, у большинства представителей второго поколения горошек был желтого цвета, а у нескольких - зеленого. Где же в первом поколении была «инструкция» заставить зеленый горошек исчезнуть?

Лишь после того, как Мендель тщательно задокументировал и распределил по категориям тысячи гибридов в масштабах многих поколений, он начал обнаруживать изумительные ответы. В растениях второго поколения вновь и вновь появлялось одно и то же любопытное соотношение: 3 к 1. На каждые три растения с фиолетовыми цветками приходилось одно с белыми. На каждые три растения с желтыми плодами приходилось одно с зеленым. На каждые три высоких растения приходилось одно карликовое - и т. д.

Для Менделя это была не статистическая погрешность, а свидетельство важного принципа, основополагающего закона. Разбираясь в том, как именно могли возникнуть такие наследственные механизмы, он постепенно приблизился к математическому и физическому объяснению того, почему именно так наследственные черты передаются от родителей к потомству. В момент озарения он предположил, что наследственность должна включать перемещение определенного «элемента» (фактора) от каждого из родителей ребенку - то, что сейчас мы называем генами .

И это было только начало. Основываясь на анализе характеристик гороха, Мендель интуитивно открыл некоторые из самых важных законов наследственности. Так, например, он пришел к правильному выводу о том, что в случае с любой существующей характеристикой потомство наследует два «элемента» (аллеля гена) - по одному от каждого родителя - и что эти элементы могут быть доминантными или рецессивными . Таким образом, применительно к каждой существующей характеристике, если потомок наследовал доминантный «элемент» от одного родителя и рецессивный от другого, то он демонстрировал доминантный признак, но при этом был носителем скрытого рецессивного, который мог передаваться следующему поколению. В случае с оттенками цветков, если потомство наследовало доминантный «фиолетовый ген» от одного родителя и рецессивный «белый» от другого, у него появлялись цветы фиолетового цвета. При этом он оставался носителем рецессивного гена белых цветов и мог передавать его своему потомству. Это наконец объяснило, как характеристики могли «пропускать» целые поколения.

Основываясь на этих и других выводах, Мендель разработал три своих самых знаменитых закона о том, как «элементы» наследственности передаются от родителя потомству.

Закон единообразия первого поколения : при скрещивании двух чистых линий (доминантной и рецессивной по одному признаку) все первое поколение будет единообразным по доминантному признаку.

Закон расщепления : при скрещивании потомков первого поколения между собой во втором поколении появятся особи как с доминантным, так и с рецессивным признаком, причем в определенном соотношении 3:1.

Для объяснения этого закона Мендель предложил закон чистоты гамет: взрослая особь имеет два элемента, отвечающих за формирование признака (два аллеля гена), из которых один доминирует (проявляется). При делении половых клеток (гамет) в каждую из них попадает лишь один из двух аллелей. При слиянии мужской и женской гамет аллели гена не смешиваются, а передаются следующему поколению в чистом виде.

Закон независимого наследования признаков : при скрещивании особей с разными признаками, гены, за них отвечающие, наследуются независимо друг от друга.

Чтобы по-настоящему оценить гениальность Менделя, важно вспомнить о том, что в период его работы никто не знал о физических основаниях наследственности. Не было концепции ДНК, генов или хромосом. При полном отсутствии знаний о том, какими могут быть «элементы» наследственности, Мендель открыл новое направление в науке, хотя определяющие термины - гены и генетика - сформировались несколькими десятилетиями позже.

Вечная тема: уверенный в своей правоте, но недооцененный при жизни

В 1865 г., после девяти лет выращивания тысяч гороховых растений и анализа их характеристик, Грегор Мендель представил свои выводы Брюннскому обществу естествоиспытателей, а в следующем году увидела свет его классическая работа «Опыты над растительными гибридами». Это один из величайших переломных моментов в истории науки и медицины. Был найден ответ на вопрос, который мучил человечество тысячелетиями.

И какой была реакция? Вялое равнодушие.

Да-да, в последующие 35 лет работу Менделя игнорировали, неверно интерпретировали. О ней просто забыли. Нельзя сказать, что он не старался: в какой-то момент он отправил свою работу Карлу Негели, влиятельному ученому-ботанику из Мюнхена. А Негели не только не сумел оценить по достоинству труд Менделя, но и отправил ответное письмо, в котором подверг работу ученого, пожалуй, самой унизительной критике в истории науки. Изучив исследование, основанное на трудах, занявших почти десять лет и потребовавших вырастить более 20 тыс. растений, Негели написал: «У меня складывается впечатление, что эксперименты только должны начаться…»

Проблема, как считают современные историки, была в том, что коллеги Менделя не сумели понять значимость его открытия. Из-за их консервативных взглядов на развитие и веры в то, что наследственные черты невозможно ни разделить, ни проанализировать, эксперимент Менделя был воспринят более чем прохладно. Мендель продолжал научную деятельность еще несколько лет, а потом прекратил ее примерно в 1868 г. - вскоре после получения сана аббата в Брюннском монастыре. Вплоть до смерти (1884 г.) он понятия не имел о том, что в один прекрасный день его назовут основателем генетики.

Как бы то ни было, Мендель был убежден в важности своего открытия. По словам одного аббата, за несколько месяцев до смерти он уверенно заявил: «Придет время, когда важность открытых мною законов будет оценена по достоинству». Также он, по некоторым данным, говорил послушникам монастыря незадолго до смерти: «Я убежден, что весь мир оценит значимость этих исследований».

35 лет спустя, когда мир наконец и правда оценил по достоинству его труды, ученые открыли то, о чем Мендель не знал, но что обеспечивает его работе финальную, многообещающую перспективу. Его законы наследственности применимы не только к растениям, но и к животным и людям.

И теперь, с наступлением эпохи научной генетики, закономерно возник вопрос: откуда берется наследственность?

Веха № 2

Исследование территории: глубокое погружение в тайны клетки

Следующая важная веха начала формироваться в 1870-е, примерно в то же время, когда Мендель начал терять надежду на успех своих экспериментов. Однако ее основание было заложено несколькими столетиями ранее. В 1660-е английский физик Роберт Гук стал первым человеком, который решил взглянуть через простейший микроскоп на кусок пробкового дерева и обнаружил то, что он назвал крошечными «ячейками». Но лишь в 1800-е несколько немецких ученых смогли изучить их более пристально и наконец обнаружить, где именно возникает наследственность: в клетке и ее ядре.

Первый важный прорыв случился в 1838–1839 гг., когда усовершенствования микроскопа позволили немецким ученым Матиасу Шлейдену и Теодору Шванну определить клетки как структурные и функциональные единицы всех живых существ. Затем в 1855 г., развенчав миф о том, что клетки появляются из ниоткуда, спонтанно, немецкий ученый Рудольф Вирхов объявил свою знаменитую формулу: Omnis cellula e cellula («Каждая клетка из клетки»). Этим утверждением Вирхов дал науке еще одну ключевую подсказку о том, откуда именно берется наследственность: если каждая клетка появлялась из другой, то информация, необходимая для создания каждой новой клетки (информация о наследственности), должна храниться где-то внутри клетки. Наконец, в 1866 г. немецкий биолог Эрнст Геккель прямо заявил: передача наследственных признаков связана с чем-то… с чем-то внутри клеточного ядра, значимость которого была признана еще в 1831 г. Робертом Броуном.

К 1870-м ученые все глубже изучали ядро клетки, обнаруживая загадочные явления, которые происходили каждый раз при клеточном делении. Так, в 1879 г. немецкий биолог Вальтер Флемминг детально изучил эти явления, назвав весь процесс митозом (непрямым делением). В своей работе, опубликованной в 1882 г., Флемминг впервые точно описал любопытные события, которые происходили непосредственно перед делением клетки: в ядре обнаруживались длинные нитеподобные структуры, которые затем «разделялись на две части». В 1888 г., когда ученые начали говорить о роли, которую эти нити играют в наследственности, немецкий анатом Генрих Вальдейер, один из великих авторов новых терминов в биологии, предложил для них новое название, которое и вошло в историю, - хромосомы.

Веха № 3

ДНК: открытие и забвение

К концу XIX века мир, настойчиво игнорирующий первый великий этап в развитии генетики, решил пренебречь и вторым - открытием ДНК. Да, именно так. ДНК, которой обязаны своим существованием гены, хромосомы, наследственные черты и, наконец, генетическая революция в XXI веке. И, как и в случае с пренебрежительным отношением к Менделю и его законам о наследственности, заблуждение не было кратковременным. Вскоре после своего открытия в 1869 г. ДНК была практически забыта на полвека.

Началось все с того, что швейцарский физиолог Фридрих Мишер, едва закончив медицинскую школу, принял ключевое решение о дальнейшей карьере. Из-за слабого слуха (последствия перенесенной в детстве инфекции) ему было сложно понимать пациентов, и он решил отказаться от карьеры в клинической медицине. Став сотрудником лаборатории в Университете Тюбингена в Германии, Мишер решил тщательно изучить недавнее предположение Эрнста Геккеля о том, что секреты наследственности могут быть раскрыты благодаря ядру клетки. Выбрав лучшие клетки для изучения ядра, он начал отмывать мертвые белые кровяные тельца (содержащиеся в большом количестве в гное) с хирургических бинтов, взятых на свалке ближайшей университетской больницы.

Отобрав для работы наименее неприятные образцы, Мишер подверг белые кровяные клетки воздействию разных химических веществ, пока не добился отделения от клеточной массы ранее неизвестного соединения. Не будучи ни белком, ни жиром, ни углеводом, это вещество обладало кислотными свойствами и содержало большое количество фосфора, чего не обнаруживалось ранее ни в одном другом органическом соединении. Не имея ни малейшего представления о том, что это, Мишер назвал вещество нуклеином. Отсюда и пошел современный термин ДНК (дезоксирибонуклеиновая кислота).

Мишер опубликовал свои научные выводы в 1871 г., а потом много лет посвятил изучению нуклеина отдельно от других клеток и веществ. Но его истинная природа оставалась тайной. И хотя Мишер был убежден, что нуклеин жизненно необходим для функционирования клетки, он в итоге отклонил идею о том, что тот играл какую-либо роль в наследственности. Другие ученые его уверенность не разделяли. Например, швейцарский анатом Альберт фон Келликер имел смелость заявить, что нуклеин, скорее всего, материальная основа наследственных механизмов. С ним согласился в 1895 г. Эдмунд Бичер Уилсон, автор классического учебника «Клетка и ее роль в развитии и наследственности», написав в одной из своих работ:

…И таким образом мы приходим к удивительному выводу о том, что на наследственность, вероятно, может влиять физическая передача конкретного химического компонента от родителя к потомству.

И вот, всего за пару шагов до открытия, способного изменить мир, ученые словно закрыли на него глаза. Мир был попросту не готов к тому, чтобы принять ДНК как биохимическую составляющую наследственности. За несколько лет о нуклеине практически забыли. Почему же ученые отказались от попыток исследовать ДНК вплоть до 1944 г.? Свою роль здесь сыграли несколько факторов, но, пожалуй, самый важный заключался в том, что ДНК казалась неспособной соответствовать поставленным наукой задачам. Как отметил Уилсон в последнем издании своего учебника в 1925 г. (что противоречило его же словам восхищения в 1895 г.), «универсальные» ингредиенты нуклеина не слишком вдохновляли, особенно в сравнении с «неисчерпаемым» разнообразием белков. Как ДНК могла отвечать за все разнообразие жизни?

Ответа на этот вопрос не было до 1940-х, но находка Мишера оказала на науку как минимум одно мощное воздействие: она вызвала новую волну исследований, которые привели к повторному открытию давно забытого этапа. И не однажды, а трижды.

Веха № 4

Рожденный заново: воскрешение монастырского священника и его учения о наследственности

Может, весна и сезон обновления, но мало что может конкурировать с возрождением, состоявшимся в начале 1900 г., когда после тридцатипятилетнего забвения Грегор Мендель и его законы о наследственности вернулись к жизни с новыми силами. То ли это было отчаянное возмездие за долгое равнодушие, то ли неизбежный результат нового витка интереса научного мира, но в начале 1900 г. даже не один, а сразу трое ученых независимо друг от друга открыли законы наследственности - впоследствии обнаружив, что их уже открыл несколько десятилетий назад скромный священник.

Голландский ботаник Хуго Де Фриз стал первым, кто объявил о своем открытии, когда его эксперименты по разведению растений показали то же соотношение 3 к 1, которое в свое время обнаружил Мендель. Следующим был Карл Корренс, немецкий ботаник, проводивший исследования с горохом, которые помогли ему заново открыть законы наследственности. И последним опубликовал свое исследование, также основанное на экспериментах по разведению гороха, австрийский ботаник Эрих Чермак-Зейзенекк. Он отмечал: «Я с величайшим удивлением прочел о том, что Мендель уже проводил такие эксперименты, причем куда более масштабные, чем мои, отметил те же несоответствия и уже дал свои объяснения соотношению 3 к 1».

И хотя серьезных споров о том, кто должен быть провозглашен автором повторного открытия, не было, Чермак позже признался в «мелкой стычке между ним и Корренсом на встрече участников общества натуралистов в Меране в 1903 г.». Но, как добавил Чермак, все трое «были хорошо осведомлены о том, что открытие [ими] законов наследственности в 1900 г. уступало масштабам достижения Менделя в его эпоху, ведь за прошедшие годы была проведена научная работа, значительно упростившая их исследования».

После того как законы Менделя возродились в XX веке, все больше ученых начали обращать внимание на те самые загадочные «единицы», определявшие наследственность. Поначалу никто точно не знал, где они находились, но к 1903 г. американский ученый Уолтер Саттон и немецкий ученый Теодор Бовери выяснили, что они расположены в хромосомах, а те - парами внутри клеток. Наконец, в 1909 г. датский биолог Вильгельм Иоганнсен предложил для этих единиц название - гены.

Веха № 5

Первая генетическая болезнь: поцелуи двоюродных братьев, черная моча и уже знакомая пропорция

Следы черной мочи на подгузнике ребенка встревожат любого родителя, но с точки зрения британского врача Арчибальда Гаррода они представляли собой свидетельство интересной проблемы, связанной с обменом веществ. И дело тут вовсе не в бесчувственности Гаррода. Болезнь, с которой он имел дело, называлась алкаптонурией. Ее самые шокирующие проявления включают изменение цвета мочи на черный под воздействием воздуха, но в целом она не опасна и встречается не чаще, чем у одного из миллиона людей по всему миру. Когда Гаррод начал изучение алкаптонурии в конце 1890-х, он понял, что эта болезнь вызвана не бактериальной инфекцией, как ему раньше казалось, а «врожденным нарушением обмена веществ». Но лишь изучив данные о детях, страдавших от этой болезни - чьи родители почти всегда были двоюродными братьями и сестрами, - он нашел подсказку, которая мгновенно изменила наше нынешнее ви дение наследственности, генов и болезни.

Когда Гаррод впервые опубликовал предварительные результаты своего исследования в 1899 г., он знал о генах и наследственности не больше, чем кто-то другой. Поэтому он и упустил из вида одно из своих ключевых наблюдений: при сравнении числа детей без алкаптонурии с числом болеющих возникало знакомое соотношение 3 к 1. Да, это было то же соотношение, что Мендель обнаружил у гороха второго поколения (например, на три растения с фиолетовыми цветками - одно с белыми), благодаря которому и появилось предположение о передаче наследственных признаков и роли «доминантных» и «рецессивных» элементов (аллелей генов). В исследовании Гаррода доминантной характеристикой была «нормальная моча», а рецессивной - «черная», и у детей второго поколения обнаруживалось то же соотношение: на троих детей с нормальной мочой у одного наблюдалась черная. Гаррод не заметил этой пропорции, но она не ускользнула от внимания британского ученого Уильяма Бейтсона, который связался с Гарродом, как только услышал о его исследовании. Гаррод вскоре согласился с Бейтсоном в том, что законы Менделя дают новый поворот, о котором он не задумывался: изучаемая им болезнь явно носит наследственный характер.

В 1902 г., обобщая результаты своей работы, Гаррод собрал их воедино: симптомы, нарушение обмена веществ и роль генов и наследственности. Он высказал предположение, что алкаптонурия обусловлена двумя наследственными «элементами» (аллелями гена) - по одной от каждого родителя, и что дефектный аллель рецессивен. Что не менее важно, он изобразил биохимическую схему, чтобы обосновать предположение о том, как именно дефектный «ген» вызывал появление болезни. Он, судя по всему, каким-то образом производил дефектный фермент, который, будучи неспособным выполнять свою нормальную метаболическую функцию, приводил к появлению черной мочи. Благодаря этой интерпретации Гаррод достиг еще одного серьезного результата. Он предположил, что именно делают гены: они производят белки, например ферменты. И если с геном что-то не так, он дефектен, он способен произвести и дефектный белок, что может спровоцировать болезнь.

Гаррод продолжил работу, занявшись описанием нескольких других метаболических отклонений, обусловленных наличием дефектных генов и ферментов (которые теперь называются тетрадой Гаррода и включают, помимо алкаптонурии, альбинизм, цистинурию и пентозурию). Но потребовалось еще полвека, чтобы другие ученые наконец доказали его правоту и оценили по достоинству значимость его открытий. Сегодня Гаррода почитают как первого человека в истории, которому удалось продемонстрировать связь между генами и заболеванием. Его работа дала начало современным концепциям генетического скрининга, рецессивной наследственности и рисков родственных браков.

А Бейтсон, вероятно, вдохновленный исследованиями Гаррода, в 1905 г. жаловался в письме, что этому новому направлению в науке не хватало хорошего названия. «Такое имя необходимо, - написал он, - и если кто-то захочет его придумать, то слово “генетика” , возможно, подойдет».

В начале 1900-х, несмотря на растущий список важных достижений, наука переживала кризис самоопределения и была разбита на два лагеря. Мендель и его последователи установили законы наследственности, но не могли объяснить, каковы были ее биологические «элементы» и как они работали. А Флеминг и другие ученые открыли многообещающие биохимические параметры в клетке, но никто не мог разобраться в том, какое отношение они имели к наследственности. К 1903 г. эти два мира сблизились, когда Уолтер Саттон и Теодор Бовери предположили, что «единицы» наследственности расположены в хромосомах, а сами хромосомы наследуются парами (одна от матери и одна от отца) и «могут быть физической основой закона Менделя о наследственности». Но лишь в 1910 г. другой американский ученый - прежде всего, к собственному удивлению - связал эти два мира единой теорией наследственности.

Веха № 6

Как бусины в ожерелье: связь между генами и хромосомами

В 1905 г. Томас Морган, биолог из Колумбийского университета, не только скептически воспринял идею о том, что хромосомы играют какую-то роль в наследственности, но и с сарказмом отреагировал на поведение коллег, поддержавших эту теорию, и жаловался на «насыщенную хромосомной кислотой» интеллектуальную атмосферу того времени. Во-первых, по мнению Моргана, идея о том, что хромосомы содержат наследственные черты, слишком похожа на идею «преформации»: некогда популярный миф о том, что каждая яйцеклетка уже содержит «заготовку» человека. Но в 1910 г. для Моргана все изменилось, после того как он зашел в «комнату с мухами» (помещение, где он и его студенты развели миллионы плодовых мушек дрозофил, чтобы изучить их генетические особенности) и совершил невероятное открытие: у одной из мушек были белые глаза.

Это было поразительное явление (обычно у дрозофил глаза красные). Но еще больше Морган удивился, когда скрестил мужскую особь с белыми глазами и женскую с красными. Первые наблюдения были не слишком удивительными: как и ожидалось, в первом поколении все мушки имели красные глаза, а во втором проявилось знакомое соотношение 3 к 1 (три красноглазые мушки на одну белоглазую). Но полной неожиданностью для Моргана, перевернувшей всю основу его понимания наследственности, стала совершенно новая находка: все представители белоглазого потомства были мужского пола .

Этот новый поворот - идея о том, что определенная черта может наследоваться только одним полом - имел фундаментальное значение в связи с открытием, сделанным за несколько лет до этого. В 1905 г. американские биологи Нетти Мария Стивенс, которая первой принесла в лабораторию Томаса Моргана плодовых мушек, и Эдмунд Бичер Уилсон обнаружили, что пол человека определяется двумя хромосомами: X и Y. У представителей женского пола всегда были две X-хромосомы, а у представителей мужского пола - одна X и одна Y. Когда Морган увидел, что все белоглазые мушки мужского пола, он понял, что ген, отвечающий за белый цвет глаз, как-то должен быть связан с мужской хромосомой. Это заставило его совершить концептуальный скачок, которому он сопротивлялся годами. Он решил, что гены, скорее всего, являются частью хромосомы.

Вскоре после этого, в 1913 г., один из студентов Моргана, Альфред Стертевант, достиг переломного этапа, когда понял, что гены на самом деле могут быть размещены внутри хромосомы линейно. Затем, в результате бессонной ночи, Стертевант создал первую в мире генетическую карту - карту Х-хромосомы дрозофилы, поместив пять генов на линейную карту и рассчитав расстояние между ними.

В 1915 г. Морган и его ученики опубликовали знаковую для науки книгу «Механизмы менделевской наследственности», которая наконец официально провозгласила существующую связь. Два прежде отдельно существовавших мира (закон наследственности Менделя и хромосомы и гены внутри клеток) были теперь одним целым. Когда в 1933 г. Морган получил Нобелевскую премию по физиологии и медицине за свое открытие, ведущий отметил, что теория о том, будто гены расположены в хромосоме «как бисер на ожерелье», изначально казалась «фантастическим заявлением» и «была встречена с обоснованным скептицизмом». Но позже проведенные исследования доказали правоту Моргана, и его выводы были признаны «фундаментальными и определяющими для исследования и понимания наследственных болезней человечества».

Веха № 7

Преобразующая истина: вновь открытая ДНК и ее любопытные свойства

К концу 1920-х были раскрыты многие секреты, связанные с наследственностью. Передачу характеристик можно объяснить с помощью законов Менделя, законы связаны с генами, а гены - с хромосомами. Казалось бы, получившаяся теория охватывала все.

Ничего подобного. Наследственность оставалась загадкой в связи с двумя серьезными проблемами. Во-первых, большинство ученых считали, что гены состоят из белков, а не ДНК. Во-вторых, никто понятия не имел о том, как гены, чем бы они ни были, определяли наследственные признаки. Ответы на все эти загадки начали обнаруживаться в 1928 г., когда британский микробиолог Фредерик Гриффит работал над совсем другой проблемой - созданием вакцины от пневмонии. Это ему не удалось, но зато он с успехом обнаружил еще одну ключевую подсказку.

Гриффит занимался изучением Streptococcus pneumoniae, когда выяснил кое-что любопытное. Одна форма бактерий, вирулентный штамм S, образовывала гладкие колонии, а другая, безобидного штамма R, - неровные. Бактерии штамма S вызывали заболевание, так как имели полисахаридную капсулу, которая защищала их от действия иммунной системы. Бактерии штамма R оказались безвредными: не имея подобной капсулы, они распознавались и уничтожались иммунной системой. Затем Гриффит обнаружил кое-что еще более странное: если мышам вводился сначала безобидный штамм R, а затем вирулентный, но убитый нагреванием штамм S, то мыши все равно погибали. После нескольких экспериментов Гриффит понял, что прежде безвредные бактерии R каким-то образом «приобретали» у вирулентных бактерий типа S способность создавать защитную капсулу. Иными словами, несмотря на то что вирулентные бактерии S были убиты, что-то в них трансформировало безвредные R-пневмококки в болезнетворные S.

Что именно это было и как это было связано с наследственностью и генетикой? Гриффит так и не узнал об этом. В 1941 г., за несколько лет до раскрытия этой тайны, он погиб от немецкого снаряда во время бомбардировки Лондона.

Когда работа Гриффита, описывавшая «трансформацию» безвредных бактерий в вирулентную форму, была опубликована в 1928 г., Освальд Эвери, ученый из Института медицинских исследований Рокфеллера в Нью-Йорке, сначала отказался верить результатам. Да и почему, собственно, он должен был им верить? Эвери занимался изучением бактерий, описанных Гриффитом, последние 15 лет, включая защитную внешнюю капсулу, и замечание о том, что один тип мог «трансформироваться» в другой, бросал ему вызов. Но когда выводы Гриффита подтвердились, Эвери стал одним из его последователей, и к середине 1930-х он и его коллега Колин Маклауд показали, что данный эффект можно воссоздать в чашке Петри. Теперь оставалось выяснить, что именно было причиной трансформации. К 1940 г., когда Эвери и Маклауд приблизились к ответу, к ним присоединился третий исследователь, Маклин Маккарти. Но определение вещества было непростой задачей. В 1943 г., когда товарищи мучились в попытках рассортировать нагромождение в клетке белков, жиров, углеводов, нуклеинов и прочих веществ, Эвери пожаловался своему брату: «Попробуй отыскать активный элемент в этой сложной смеси! Та еще работка - сплошная душевная боль и разбитое сердце». Правда, при этом Эвери добавил интригующую фразу: «Но, в конце концов, быть может, у нас получится».

И, конечно, у них все получилось. В феврале 1944 г. Эвери, Маклауд и Маккарти опубликовали работу, в которой говорилось, что ими определен «трансформирующий принцип» путем простого - впрочем, не такого уж простого - процесса устранения. Протестировав все, что можно было найти в этой сложной клеточной смеси, они выяснили: лишь одно вещество трансформировало R-пневмококки в S-форму. Это был нуклеин - то же вещество, которое впервые было определено Фридрихом Мишером и которое они теперь назвали дезоксирибонуклеиновой кислотой, или ДНК. Сегодня этот классический труд считают первой научной работой, представившей доказательство того, что именно ДНК - та самая молекула, отвечающая за наследственность. «Кто бы мог подумать?» - писал Эвери брату.

Из книги Великие тайны цивилизаций. 100 историй о загадках цивилизаций автора Мансурова Татьяна

Гениально простой шифр «Искусство тайнописи, или, как его обычно называют, шифрования, в течение многих веков привлекало внимание как государственных мужей, так и философов; все знакомые с нынешним состоянием этого искусства, как я считаю, признают, что оно по-прежнему

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

Из книги Политика: История территориальных захва­тов. XV-XX века: Сочинения автора Тарле Евгений Викторович

Из книги Легион «белой смерти» автора Шанкин Генрих

Александр Бабаш, Генрих Шанкин Шифр, достойный королей Несущие смерть «любовные» послания кардинала Ришелье; конфиденциальные сведения «невинных» писем А. Грибоедова шефу жандармского корпуса, гибель всемирно известного астролога Кардана и пляшущие человечки А. Конан

Из книги Шифры советской разведки автора Синельников Андрей Владимирович

Из книги Занимательная ДНК-генеалогия [Новая наука дает ответы] автора Клёсов Анатолий Алексеевич

Неужели «генетики нашли разных русских»? В современной России это повторяется с завидной частотой – средства массовой информации подхватывают нечто, что должно показать хотя бы какое подобие раскола между русскими, а другие с радостью перепечатывают на десятках

Из книги Тайны Беларуской Истории. автора Деружинский Вадим Владимирович

Нюансы генетики. Вот еще несколько фактов о генетических корнях европейцев.Финская гаплогруппа N3 представлена у народов Европы следующим образом: венгры - 1 % (это кажется просто фантастическим, не могу найти иного объяснения, кроме того, что венгры - чистые угры, а не

Из книги Дело генетиков автора

Глава 7 «ЛЕНИНГРАДСКОЕ ДЕЛО» И ГЕНЕТИКИ «ЛЕНИНГРАДСКОЕ ДЕЛО»В событиях 1949–1950 годов чаще всего видят противоборство неких кланов в ЦК ВКП(б). Причем, ведущие партийные и советские деятели оказываются у разных авторов то по одну, то по другую сторону «баррикад».Впервые

Из книги Сталинский порядок автора Миронин Сигизмунд Сигизмундович

Глава 7 МИФ О РАЗГРОМЕ СТАЛИНЫМ СОВЕТСКОЙ ГЕНЕТИКИ В 1948 ГОДУ Много внимания уделяется в современной литературе обвинениям Сталина в том, что он, дескать, разгромил советскую генетику в ходе приснопамятной сессии ВАСХНИЛ 1948 года, тем самым отбросив советских генетиков на

Из книги Политическая биография Сталина. Том 1. автора Капченко Николай Иванович

1. Сталин в зеркале политической генетики Понятие политическая генетика используется мною для обозначения тех методов и подходов, в основе которых лежит стремление найти объяснение многих действий и поступков Сталина в плоскости преимущественно психологических и

Из книги Боже, спаси русских! автора Ястребов Андрей Леонидович

Из книги Антисемитизм как закон природы автора Бруштейн Михаил

Из книги Три миллиона лет до нашей эры автора Матюшин Геральд Николаевич

6. Самый сложный шифр 6.1. На приеме у академика6.2. Таинственный монах6.3. В кабинете академика6.4. Пляшущие тельца6.5.

Из книги Четвёртый ингредиент автора Брук Михаил

ГЛАВА 9.ЛОВУШКА ДЛЯ БОГА. НОЧЬЮ, ПРЕДСТАВ ПРЕДО МНОЮ, ПРОМОЛВИЛ МНЕ БОГ, УЛЫБАЯСЬ: «БОГ Я, - И ВСЕ ЖЕ ПОЗНАЛ ВРЕМЕНИ ВЛАСТЬ НАД СОБОЙ»,- усмехнулся Паллад Александриец. «ДУША ИСПЫТЫВАЕТ СТРАХ, ИБО ПЕРЕД НЕЙ ПРИОТКРЫВАЮТСЯ МИЛЛИАРДЫ ЛЕТ, МИЛЛИОНЫ НАРОДОВ, НЕ ТОЛЬКО

Из книги Русские землепроходцы – слава и гордость Руси автора Глазырин Максим Юрьевич

Солнце русской генетики 1920 год, 4 июня. Н. И. Вавилов, возглавил оргкомитет III Всероссийского съезда по селекции и семеноводству в Саратове. Н. И. Вавилов открывает закон гомологических рядов в наследственности и изменчивости, «периодическая система» в растительном мире.

Похожие публикации