Углерод и его соединения. Углерод — химические и физические свойства Какие химические свойства характерны для углерода

Углерод в свободном состоянии является типичным восстановителем. При окислении кислородом в избытке воздуха он превращается в оксид углерода (IV):

при недостатке - в оксид углерода (II):

Обе реакции сильно экзотермичны.

При нагревании углерода в атмосфере оксида углерода (IV) образуется угарный газ:

Углерод восстанавливает многие металлы из их оксидов:

Так протекают реакции с оксидами кадмия, меди, свинца. При взаимодействии углерода с оксидами щелочноземельных металлов, алюминия и некоторых других металлов образуются карбиды:

Объясняется это тем, что активные металлы - более сильные восстановители, чем углерод, поэтому при нагревании образующиеся металлы окисляются избытком углерода:

Оксид углерода (II).

При неполном окислении углерода образуется оксид углерода (II) СО - угарный газ. В воде он плохо растворим. Формальная степень окисления углерода 2+ не отражает строение молекулы СО.

В молекуле СО, помимо двойной связи, образованной обобществлением электронов углерода и кислорода, имеется дополнительная, третья связь (изображена стрелкой), образованная по донорно-акцепторному механизму за счет неподеленной пары электронов кислорода

В связи с этим, молекула СО крайне прочна. Оксид углерода (II) является несолеобразующим и не взаимодействует в обычных условиях с водой, кислотами и щелочами. При повышенных температурах он склонен к реакциям присоединения и окисления-восстановления. На воздухе СО горит синим пламенем:

Он восстанавливает металлы из их оксидов:

Под действием облучения на прямом солнечном свету или в присутствии катализаторов СО соединяется с образуя фосген - крайне ядовитый газ:

Со многими металлами СО образует летучие карбонилы:

Ковалентная связь в молекуле карбонила никеля образуется по донорно-акцепторному механизму, причем электронная плотность смещается от атома углерода к атому никеля. Увеличение отрицательного заряда на атоме металла компенсируется участием его d-электронов в связи, поэтому степень окисления металла равна 0. При нагревании карбонилы металлов разлагаются на металл и оксид углерода (II), что используется для получения металлов особой чистоты.

В природе оксид углерода (II) практически не встречается. Он может образовываться при обезвоживании муравьиной кислоты (лабораторный способ получения):

Исходя из последнего превращения, чисто формально можно считать СО ангидридом муравьиной кислоты. Это подтверждается следующей реакцией, которая происходит при пропускании СО в расплав щелочи при высоком давлении:

Оксид углерода (IV) и угольная кислота. Оксид углерода (IV) является ангидридом угольной кислоты и обладает всеми свойствами кислотных оксидов (см. § 8).

При растворении в воде частично образуется угольная кислота, при этом в растворе существует следующее равновесие.

Химические свойства: При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C Степени окисления +4 (напр., CO 2), −4 (напр., CH 4), редко +2 (СО, карбонилы металлов), +3 (C 2 N 2); сродство к электрону 1,27 эВ; энергия ионизации при последовательном переходе от С 0 к С 4+ соответственно 11,2604, 24,383, 47,871 и 64,19 эВ.

Наиболее известны три оксидауглерода:

1)Монооксид углеродаCO (представляет собой бесцветный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей.)

2)Диоксид углеродаCO 2 (Не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье. Недостаток углекислого газа тоже опасен. Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса)

3)Диоксид триуглеродаC 3 O 2 (цветный ядовитый газ с резким, удушливым запахом, легко полимеризующийся в обычных условиях с образованием продукта, нерастворимого в воде, жёлтого, красного или фиолетового цвета.)

Соединения с неметаллами имеют свои собственные названия - метан,тетрафторметан.

Продукты горения углерода в кислороде являются CO и CO 2 (монооксид углеродаидиоксид углеродасоответственно). Известен также неустойчивыйнедооксид углеродаС 3 О 2 (температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды (например C 12 O 9 , C 5 O 2 , C 12 O 12). Графит и аморфный углерод начинают реагировать с водородом при температуре 1200 °C, с фтором при 900 °C.

Углекислый газреагируетс водой , образуя слабую угольную кислоту- H 2 CO 3 , которая образует соли - карбонаты. На Земле наиболее широко распространены карбонатыкальция(минеральные формы -мел,мрамор,кальцит,известняки др.) имагния

43 Вопрос. Кремний

Кремний (Si) – стоит в 3 периоде, IV группе главной подгруппы периодич. системы.

Физ. св-ва: кремний существует в двух модификациях: аморфной и кристаллической. Аморфный кремний – порошок бурого цвета р-ряется в расплавах металлов. Кристаллич. кремний – это кристаллы темно-серого цвета, обладающие стальным блеском, твердый и хрупкий. Кремний состоит из трех изотопов.

Хим. св-ва: электронная конфигурация: 1s 2 2s 2 2p 6 3 s 2 3p 2 . Кремний – неметалл. На внешнем энергетич. ур-не кремний имеет 4 е, что обуславливает его степени окисления: +4, -4, -2. Валентность – 2, 4. Аморфный кремний обладает большей реакционной способностью, чем кристаллический. При обычных условиях он взаимодействует со фтором: Si + 2F 2 = SiF 4 .

Из к-т кремний взаимодействует только со смесью азотной и плавиковой кислот:

По отношению к металлам ведет себя по-разному: в расплавленных Zn, Al, Sn, Pb он хорошо растворяется, но не реагирует с ними; с другими расплавами металлов – с Mg, Cu, Fe кремний взаимодействует с образованием силицидов: Si + 2Mg = Mg2Si. Кремний горит в кислороде: Si + O2 = SiO2 (песок).

Получение: Свободн. кремний м.б.получен прокаливанием с магнием мелкого белого песка, который по хим. составу является почти чистым окислом кремния,SiO2+2Mg=2MgO+Si.

Оксид кремния(II)SiO - смолоподобное аморфное в-во, при обычных условиях устойчиво к действию кислорода. Относится к несолеобразующим оксидам. В природе SiO не встречается. Газообразный моноксид кремния обнаружен в газопылевых облаках межзвездных сред и на солнечных пятнах.Получение: Моноксид кремния можно получить, нагревая кремний в недостатке кислорода при температуре 2Si + O 2 нед → 2SiO. При нагревании в избытке кислорода образуется оксид кремния(IV) SiO2: Si + O 2 изб → SiO 2 .

Также SiO образуется при восстановлении SiO2 кремнием при высоких температурах: SiO 2 + Si → 2SiO.

Oксид кремния(IV)SiO2- бесцветные кристаллы , обладают высокой твёрдостью и прочностью.Св-ва: Относится к группе кислотн. оксидов.При нагревании взаимодействует с основн. оксидами и щелочами.Р-ряется в плавиковой к-те.SiO2 относится к группе стеклообразующих оксидов, т.е. склонен к образованию переохлажденного расплава - стекла.Один из лучших диэлектриков (электрич.ток не проводит).Имеет атомную кристал.решетку.

Нитрид- бинарное неорганич. хим.соединение, представляющее собой соединение кремния и азота Si 3 N 4 .Св-ва: Нитрид кремния обладает хорошими мех.и физ.-хим. св-вами. Благодаря нитридкремниевой связи значит. улучшаются эксплуатационные св-ва огнеупоров на основе карбида кремния, периклаза, форстерита и т. п. Огнеупоры на нитридной связке обладают высокой термо- и износостойкостью,имеют превосходную стойкость к растрескиванию,а также воздействию к-т, щелочей, агрессивных расплавов и паров металлов.

Хлорид кремния(IV)Четыреххлористый кремний - бесцветное в-во, хим. формула кот. SiCl 4 .Применяется в производстве кремний-органич. соединений; применяется для создания дымовых завес. Технич. четыреххлористый кремний предназначен для производства этилсиликатов, аэросила.

Карбид кремния - бинарное неорганич. хим. соединение кремния с углеродом SiC. В природе встречается в виде чрезвычайно редкого минерала - муассанита.

Диоксид кремния или кремнезем – стойкое соединение Si , широко распространен в природе. Реагирует со сплавлением его с щелочами, основными оксидами, образуя соли кремниевой кислоты – силикаты. Получение: в промышленности кремний в чистом виде получают восстановлением диоксида кремния коксом в электропечах: SiO 2 + 2С = Si + 2СO 2 .

В лаборатории кремний получают прокаливанием с магнием или алюминием белого песка:

SiO 2 + 2Mg = 2MgO + Si.

3SiO 2 + 4Al = Al 2 О 3 + 3Si.

Кремний образует к-ты: Н 2 SiO 3 – мета-кремниевая к-та; Н 2 Si 2 O 5 – двуметакремниевая к-та.

Нахождение в природе: минерал кварц – SiO2. Кристаллы кварца имеют форму шестигранной призмы, бесцветные и прозрачные, назыв.горным хрусталем. Аметист – горный хрусталь, окрашенный примесями в лиловый цвет; дымчатый топаз окрашен в буроватый цвет; агат и яшма – кристаллич. разновидности кварца. Аморфный кремнезем менее распространен и существует в виде минерала опала. Диатомит, трепел или кизельгур (инфузорная земля) – землистые формы аморфного кремния.Общ. формула кремниевых к-т – n SiO2? m H2O. В природе нах-ся в основном в виде солей, в свободн. форме выделены немногие, напр, HSiO (ортокремниевая) и H 2 SiO 3 (кремниевая или метакремниевая).

Получение кремниевой кислоты:

1) взаимодействие силикатов щелочн. металлов с к-тами: Na 2 SiO 3 + 2HCl = H 2 SiO 3 + 2NaCl;

2) кремневая к-та явл. термически неустойчивой: H 2 SiO 3 = H 2 O + SiO 2 .

H 2 SiO 3 образует пересыщенные р-ры, в кот. в рез-те полимеризации образует коллоиды. Используя стабилизаторы, можно получить стойкие коллоиды (золи). Их используют в производстве. Без стабилизаторов из р-ра кремниевой к-ты образуется гель, осушив который можно получить силикагель (используют как адсорбент).

Силикаты – соли кремниевой к-ты. Силикаты распространены в природе, земная кора состоит в большинстве из кремнезема и силикатов (полевые шпаты, слюда, глина, тальк и др.). Гранит, базальт и другие горные породы имеют в своем составе силикаты. Изумруд, топаз, аквамарин – кристаллы силикатов. Растворимы только силикаты натрия и калия, остальные – нерастворимы. Силикаты имеют сложн. хим. состав: Каолин Al 2 O 3 ; 2SiO 2 ; 2H 2 O или H 4 Al 2 SiO 9 .

Асбест CaO; 3MgO; 4SiO 2 или CaMgSi 4 O 12 .

Получение: сплавление оксида кремния со щелочами или карбонатами.

Растворимое стекло – силикаты натрия и калия. Жидкое стекло – водн. р-ры силикатов калия и натрия. Его использ. для изготовления кислотоупорного цемента и бетона, керосинонепроницаемых штукатурок, огнезащитных красок. Алюмосиликаты – силикаты, содержащие алюминий (полевой шпат, слюда ). Полевые шпаты состоят помимо оксидов кремния и алюминия из оксидов калия, натрия, кальция. Слюды имеют в своем составе, кроме кремния и алюминия, еще водород, натрий или калий, реже – кальций, магний, железо. Граниты и гнейсы (горные породы) – сост. из кварца, полевого шпата и слюды. Горн. породы и минералы, находясь на пов-ти Земли, вступают во взаимодействие с водой и воздухом, что вызывает их изменение и разрушение. Этот процесс назыв. выветриванием .

Применение: силикатные породы (гранит) использ. как строительный материал, силикаты – в кач-ве сырья при производстве цемента, стекла, керамики, наполнителей; слюду и асбест – как электро– и термоизоляцию.

МОУ «Никифоровская средняя общеобразовательная школа №1»

Углерод и его основные неорганические соединения

Реферат

Выполнил: ученик 9В класса

Сидоров Александр

Учитель: Сахарова Л.Н.

Дмитриевка 2009


Введение

Глава I. Всё об углероде

1.1. Углерод в природе

1.2. Аллотропные модификации углерода

1.3. Химические свойства углерода

1.4. Применение углерода

Глава II. Неорганические соединения углерода

Заключение

Литература


Введение

Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома углерода. На наружном энергетическом уровне атома углерода находятся четыре электрона. Изобразим графически:


Углерод был известен с глубокой древности, и имя первооткрывателя этого элемента неизвестно.

В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный и нагрели их с помощью зажигательного стекла солнечными лучами. Алмазы исчезли, сгорев на воздухе. В 1772 г. французский химик А. Лавуазье показал, что при сгорании алмаза образуется СО 2 . Лишь в 1797 г. английский ученый С. Теннант доказал идентичность природы графита и угля. После сгорания равных количеств угля и алмаза объемы оксида углерода (IV) оказались одинаковыми.

Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обуславливает особое положение углерода среди других элементов.


Глава I . Всё об углероде

1.1. Углерод в природе

Углерод находится в природе, как в свободном состоянии, так и в виде соединений.

Свободный углерод встречается в виде алмаза, графита и карбина.

Алмазы очень редки. Самый большой из известных алмазов – «Куллинан» был найден в 1905 г. в Южной Африке, весил 621,2 г и имел размеры 10×6,5×5 см. В Алмазном фонде в Москве хранится один из самых боль­ших и красивых алмазов в мире – «Орлов» (37,92 г).

Свое название алмаз получил от греч. «адамас» – непобедимый, несокрушимый. Самые значительные месторождения алмазов находятся в Южной Африке, Бразилии, в Якутии.

Крупные залежи графита находятся в ФРГ, в Шри-Ланке, в Сибири, на Алтае.

Главными углеродсодержащими минералами являются: магнезит МgСО 3 , кальцит (известковый шпат, известняк, мрамор, мел) СаСО 3 , доломит СаМg(СО 3) 2 и др.

Все горючие ископаемые – нефть, газ, торф, каменные и бурые угли, сланцы – построены на углеродной основе. Близки по составу к углероду некоторые ископаемые угли, содержащие до 99% С.

На долю углерода приходится 0,1% земной коры.

В виде оксида углерода (IV) СО 2 углерод входит в состав атмосферы. В гидросфере растворено большое количество СО 2 .

1.2. Аллотропные модификации углерода

Элементарный углерод образует три аллотропные модификации: алмаз, графит, карбин.

1. Алмаз – бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света. Атомы углерода в алмазе находятся в состоянии sр 3 -гибридизации. В возбуждённом состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов. При образовании химических связей электронные облака приобретают одинаковую вытянутую форму и располагаются в пространстве так, что их оси оказываются направленными к вершинам тетраэдра. При перекрывании вершин этих облаков с облаками других атомов углерода возникают ковалентные связи под углом 109°28", и образуется атомная кристаллическая решетка, характерная для алмаза.

Каждый атом углерода в алмазе окружён четырьмя другими, расположенными от него в направлениях от центра тетраэдров к вершинам. Расстояние между атомами в тетраэдрах равно 0,154 нм. Прочность всех связей одинакова. Таким образом, атомы в алмазе «упакованы» очень плотно. При 20°С плотность алмаза составляет 3,515 г/см 3 . Этим объясняется его исключительная твердость. Алмаз плохо проводит электрический ток.

В 1961 г. в Советском Союзе было начато промышленное производство синтетических алмазов из графита.

При промышленном синтезе алмазов используются давления в тысячи МПа и температуры от 1500 до 3000°С. Процесс ведут в присутствии катализаторов, которыми могут служить некоторые металлы, например Ni. Основная масса образующихся алмазов – небольшие кристаллы и алмазная пыль.

Алмаз при нагревании без доступа воздуха выше 1000°С превращается в графит. При 1750°С превращение алмаза в графит происходит быстро.

Структура алмаза

2. Графит – серо-чёрное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступающее даже бумаге.

Атомы углерода в кристаллах графита находятся в состоянии sр 2 -гибридизации: каждый из них образует три ковалентные σ-связи с соседними атомами. Углы между направлениями связей равны 120°. В результате образуется сетка, составленная из правильных шестиугольников. Расстояние между соседними ядрами атомов углерода внутри слоя составляет 0,142 нм. Четвёртый электрон внешнего слоя каждого атома углерода в графите занимает р-орбиталь, не участвующую в гибридизации.

Негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя, и перекрываясь друг с другом, образуют делокализованные σ-связи. Соседние слои в кристалле графита находятся друг от друга на расстоянии 0,335 нм и слабо связаны между собой, в основном силами Ван-дер-Ваальса. Поэтому графит имеет низкую механическую прочность и легко расщепляется на чешуйки, которые сами по себе очень прочны. Связь между слоями атомов углерода в графите частично имеет металлический характер. Этим объясняется тот факт, что графит хорошо проводит электрический ток, но все, же не так хорошо, как металлы.

Структура графита

Физические свойства в графите сильно различаются по направлениям – перпендикулярному и параллельному слоям атомов углерода.

При нагревании без доступа воздуха графит не претерпевает никаких изменений до 3700°С. При указанной температуре он возгоняется, не плавясь.

Искусственный графит получают из лучших сортов каменного угля при 3000°С в электрических печах без доступа воздуха.

Графит термодинамически устойчив в широком интервале температур и давлений, поэтому он принимается в качестве стандартного состояния углерода. Плотность графита составляет 2,265 г/см 3 .

3. Карбин – мелкокристаллический порошок чёрного цвета. В его кристаллической структуре атомы углерода соединены чередующимися одинарными и тройными связями в линейные цепочки:

−С≡С−С≡С−С≡С−

Это вещество впервые получено В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым в начале 60-х годов XX века.

Впоследствии было показано, что карбин может существовать в разных формах и содержит как полиацетиленовые, так и поликумуленовые цепочки, в которых углеродные атомы связаны двойными связями:

С=С=С=С=С=С=

Позднее карбин был найден в природе – в метеоритном веществе.

Карбин обладает полупроводниковыми свойствами, под действием света его проводимость сильно увеличивается. За счёт существования разных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке физические свойства карбина могут меняться в широких пределах. При нагревании без доступа воздуха выше 2000°С карбин устойчив, при температурах около 2300°С наблюдается его переход в графит.

Природный углерод состоит из двух изотопов

(98,892%) и (1,108%). Кроме того, в атмосфере обнаружены незначительные примеси радиоактивного изотопа , который получают искусственным путём.

Раньше считали, что древесный уголь, сажа и кокс близки по составу чистому углероду и отличающиеся по свойствам от алмаза и графита, представляют самостоятельную аллотропную модификацию углерода («аморфный углерод»). Однако было установлено, что эти вещества состоят из мельчайших кристаллических частиц, в которых атомы углерода связаны так же, как в графите.

4. Уголь – тонко измельчённый графит. Образуется при термическом разложении углеродсодержащих соединений без доступа воздуха. Угли существенно различаются по свойствам в зависимости от вещества, из которого они получены и способа получения. Они всегда содержат примеси, влияющие на их свойства. Наиболее важные сорта угля – кокс, древесный уголь, сажа.

Кокс получается при нагревании каменного угля без доступа воздуха.

Древесный уголь образуется при нагревании дерева без доступа воздуха.

Сажа – очень мелкий графитовый кристаллический порошок. Образуется при сжигании углеводородов (природного газа, ацетилена, скипидара и др.) при ограниченном доступе воздуха.

Активные угли - пористые промышленные адсорбенты, состоящие в основном из углерода. Адсорбцией называют поглощение поверхностью твёрдых веществ газов и растворённых веществ. Активные угли получают из твердого топлива (торфа, бурого и каменного угля, антрацита), дерева и продуктов его переработки (древесного угля, опилок, отходов бумажного производства), отходов кожевенной промышленности, материалов животного происхождения, например костей. Угли, отличающиеся высокой механической прочностью, производят из скорлупы кокосовых и других орехов, из косточек плодов. Структура углей представлена порами всех размеров, однако адсорбционная ёмкость и скорость адсорбции определяются содержанием микропор в единице массы или объёма гранул. При производстве активного угля вначале исходный материал подвергают термической обработке без доступа воздуха, в результате которой из него удаляется влага и частично смолы. При этом образуется крупнопористая структура угля. Для получения микропористой структуры активацию производят либо окислением газом или паром, либо обработкой химическими реагентами.

  • Обозначение - C (Carbon);
  • Период - II;
  • Группа - 14 (IVa);
  • Атомная масса - 12,011;
  • Атомный номер - 6;
  • Радиус атома = 77 пм;
  • Ковалентный радиус = 77 пм;
  • Распределение электронов - 1s 2 2s 2 2p 2 ;
  • t плавления = 3550°C;
  • t кипения = 4827°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,55/2,50;
  • Степень окисления: +4, +3, +2, +1, 0, -1, -2, -3, -4;
  • Плотность (н. у.) = 2,25 г/см 3 (графит);
  • Молярный объем = 5,3 см 3 /моль.
Соединения углерода:

Углерод в виде древесного угля известен человеку с незапамятных времен, поэтому, о дате его открытия говорить не имеет смысла. Собственно свое название "углерод" получил в 1787 году, когда была опубликована книга "Метод химической номенклатуры", в которой вместо французского названия «чистый уголь» (charbone pur) появился термин «углерод» (carbone).

Углерод обладает уникальной способностью образовывать полимерные цепочки неограниченной длины, порождая тем самым огромный класс соединений, изучением которых занимается отдельный раздел химии - органическая химия. Органические соединения углерода лежат в основе земной жизни, поэтому, о важности углерода, как химического элемента, говорить не имеет смысла - он основа жизни на Земле.

Сейчас рассмотрим углерод с точки зрения неорганической химии.


Рис. Строение атома углерода .

Электронная конфигурация углерода - 1s 2 2s 2 2p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у углерода находятся 4 электрона: 2 спаренных на s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома углерода в возбужденное состояние (требует энергетических затрат) один электрон с s-подуровня "покидает" свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома углерода приобретает следующий вид: 1s 2 2s 1 2p 3 .


Рис. Переход атома углерода в возбужденное состояние.

Такая "рокировка" существенно расширяет валентные возможности атомов углерода, которые могут принимать степень окисления от +4 (в соединениях с активными неметаллами) до -4 (в соединениях с металлами).

В невозбужденном состоянии атом углерода в соединениях имеет валентность 2, например, CO(II), а в возбужденном - 4: CO 2 (IV).

"Уникальность" атома углерода заключается в том, что на его внешнем энергетическом уровне находятся 4 электрона, поэтому, для завершения уровня (к чему, собственно, стремятся атомы любого химического элемента) он может с одинаковым "успехом", как отдавать, так и присоединять электроны с образованием ковалентных связей (см. Ковалентная связь).

Углерод, как простое вещество

Как простое вещество углерод может находиться в виде нескольких аллотропных модификаций:

  • Алмаз
  • Графит
  • Фуллерен
  • Карбин

Алмаз


Рис. Кристаллическая решетка алмаза.

Свойства алмаза :

  • бесцветное кристаллическое вещество;
  • самое твердое вещество в природе;
  • обладает сильным преломляющим эффектом;
  • плохо проводит тепло и электричество.


Рис. Тетраэдр алмаза.

Исключительная твердость алмаза объясняется строением его кристаллической решетки, которая имеет форму тетраэдра - в центре тетраэдра находится атом углерода, который связан равноценно прочными связями с четырьмя соседними атомами, образующими вершины тетраэдра (см. рисунок выше). Такая "конструкция" в свою очередь связана с соседними тетраэдрами.

Графит


Рис. Кристаллическая решетка графита.

Свойства графита:

  • мягкое кристаллическое вещество серого цвета слоистой структуры;
  • обладает металлическим блеском;
  • хорошо проводит электричество.

В графите атомы углерода образуют правильные шестиугольники, лежащие в одной плоскости, организованные в бесконечные слои.

В графите химические связи между соседними атомами углерода образованы за счет трех валентных электронов каждого атома (изображены синим цветом на рисунке ниже), при этом четвертый электрон (изображен красным цветом) каждого атома углерода, расположенный на p-орбитали, лежащей перпендикулярно плоскости слоя графита, не участвует в образовании ковалентных связей в плоскости слоя. Его "предназначение" заключается в другом - взаимодействуя со своим "собратом", лежащим в соседнем слое, он обеспечивает связь между слоями графита, а высокая подвижность p-электронов обусловливает хорошую электропроводность графита.


Рис. Распределение орбиталей атома углерода в графите.

Фуллерен


Рис. Кристаллическая решетка фуллерена.

Свойства фуллерена:

  • молекула фуллерена представляет собой совокупность атомов углерода, замкнутых в полые сферы типа футбольного мяча;
  • это мелкокристаллическое вещество желто-оранжевого цвета;
  • температура плавления = 500-600°C;
  • полупроводник;
  • входит в состав минерала шунгита.

Карбин

Свойства карбина:

  • инертное вещество черного цвета;
  • состоит из полимерных линейных молекул, в которых атомы связаны чередующимися одинарными и тройными связями;
  • полупроводник.

Химические свойства углерода

При нормальных условиях углерод является инертным веществом, но при нагревании может реагировать с разнообразными простыми и сложными веществами.

Выше уже было сказано, что на внешнем энергетическом уровне углерода находится 4 электрона (ни туда, ни сюда), поэтому углерод может, как отдавать электроны, так и принимать их, проявляя в одних соединениях восстановительные свойства, а в других - окислительные.

Углерод является восстановителем в реакциях с кислородом и другими элементами, имеющими более высокую электроотрицательность (см. таблицу электроотрицательности элементов):

  • при нагревании на воздухе горит (при избытке кислорода с образованием углекислого газа; при его недостатке - оксида углерода(II)):
    C + O 2 = CO 2 ;
    2C + O 2 = 2CO.
  • реагирует при высоких температурах с парами серы, легко взаимодействует с хлором, фтором:
    C + 2S = CS 2
    C + 2Cl 2 = CCl 4
    2F 2 + C = CF 4
  • при нагревании восстанавливает из оксидов многие металлы и неметаллы:
    C 0 + Cu +2 O = Cu 0 + C +2 O;
    C 0 +C +4 O 2 = 2C +2 O
  • при температуре 1000°C реагирует с водой (процесс газификации), с образованием водяного газа:
    C + H 2 O = CO + H 2 ;

Углерод проявляет окислительные свойства в реакциях с металлами и водородом:

  • реагирует с металлами с образованием карбидов:
    Ca + 2C = CaC 2
  • взаимодействуя с водородом, углерод образует метан:
    C + 2H 2 = CH 4

Углерод получают термическим разложением его соединений или пиролизом метана (при высокой температуре):
CH 4 = C + 2H 2 .

Применение углерода

Соединения углерода нашли самое широкое применение в народном хозяйстве, перечислить все их не представляется возможным, укажем только некоторые:

  • графит применяется для изготовления грифелей карандашей, электродов, плавильных тиглей, как замедлитель нейтронов в ядерных реакторах, как смазочный материал;
  • алмазы применяются в ювелирном деле, в качестве режущего инструмента, в буровом оборудовании, как абразивный материал;
  • в качестве восстановителя углерод используют для получения некоторых металлов и неметаллов (железа, кремния);
  • углерод составляет основную массу активированного угля, который нашел широчайшее применение, как в быту (например, в качестве адсорбента для очистки воздуха и растворов), так и в медицине (таблетки активированного угля) и в промышленности (в качестве носителя для каталитических добавок, катализатора полимеризации и проч.).

Углерод – это, наверное, один из самых впечатляющих элементов химии на нашей планете, который обладает уникальной способностью образовывать огромное множество различных органических и неорганических связей.

Одним словом, углеродные соединения, которые обладают уникальными характеристиками – основа жизни на нашей планете.

Что такое углерод


В химической таблице Д.И. Менделеева углерод находится под шестым номером, входит в 14 группу и носит обозначение «С».

Физические свойства

Это водородное соединение, входящее в группу биологических молекул, молярная масса и молекулярная масса которого – 12,011, температура плавления составляет 3550 градусов.

Степень окисления данного элемента может быть: +4, +3, +2, +1, 0, -1, -2, -3, -4, а плотность составляет 2,25 г/см 3 .

В агрегатном состоянии углерод — твердое вещество, а кристаллическая решетка — атомная.

Углерод имеет следующие аллотропные модификации:

  • графит;
  • фуллерен;
  • карбин.

Строение атома

Атом вещества имеет электронную конфигурацию вида — 1S 2 2S 2 2P 2 . На внешнем уровне у атома 4 электрона, находящиеся на двух разных орбиталях.

Если же брать возбужденное состояние элемента, то его конфигурация становится 1S 2 2S 1 2P 3 .

К тому же атом вещества может быть первичным, вторичным, третичным и четвертичным.

Химические свойства

Пребывая в нормальных условиях, элемент инертен и во взаимодействие с металлами и неметаллами вступает при повышенных температурах:

  • взаимодействует с металлами, вследствие чего образуются карбиды;
  • вступает в реакцию с фтором (галоген);
  • при повышенных температурах взаимодействует с водородом и серой;
  • при повышении температуры обеспечивает восстановление металлов и неметаллов из оксидов;
  • при 1000 градусах вступает во взаимодействие с водой;
  • при повышении температуры горит.

Получение углерода

Углерод в природе можно найти в виде черного графита либо же, что очень редко, в виде алмаза. Ненатуральный графит получают с помощью реакции кокса с кремнеземом.

А ненатуральные алмазы получают, применяя тепло и давление вместе с катализаторами. Так металл расплавляется, а получившийся алмаз выходит в виде осадка.

Добавление азота приводит к получению желтоватых алмазов, а бора – голубоватых.

История открытия

Углерод использовался людьми с давних времен. Грекам был известен графит и уголь, а алмазы впервые нашлись в Индии. К слову, в качестве графита люди часто принимали схожие по виду соединения. Но даже несмотря на это, графит широко использовался для письма, ведь даже слово «графо» с греческого языка переводится как «пишу».

В настоящее время графит используется так же в письме, в частности его можно встретить в карандашах. В начале 18 века в Бразилии началась торговля алмазами, были открыты многие месторождения, а уже во второй половине 20 века люди научились получать ненатуральные драгоценные камни.

На настоящий момент ненатуральные алмазы используются в промышленности, а настоящие – в ювелирной сфере.

Роль углерода в организме человека

В тело человека углерод попадает вместе с пищей, в течение суток – 300 г. А общее количество вещества в человеческом организме составляет 21% от массы тела.

Из данного элемента состоят на 2/3 мышцы и 1/3 костей. А выводится из тела газ вместе с выдыхаемым воздухом либо же с мочевиной.

Стоит отметить: без этого вещества жизнь на Земле невозможна, ведь углерод составляет связи, помогающие организму бороться с губительным влиянием окружающего мира.

Таким образом, элемент способен составлять продолжительные цепи либо же кольца атомов, которые представляют собой основу для множества других важных связей.

Нахождение в природе углерода

Элемент и его соединения можно встретить повсюду. В первую очередь отметим, что вещество составляет 0,032% от общего количества земной коры.

Одиночный элемент можно встретить в каменном угле. А кристаллический элемент находится в аллотропных модификациях. Также в воздухе постоянно растет количество углекислого газа.

Большую концентрацию элемента в окружающей среде можно встретить в качестве соединений с различными элементами. Например, двуокись углерода содержится в воздухе в количестве 0,03%. В таких минералах как известняк или же мрамор, содержатся карбонаты.

Все живые организмы несут в себе соединения углерода с иными элементами. К тому же остатки живых организмов становятся такими отложениями, как нефть, битум.

Применение углерода

Соединения этого элемента широко используются во всех сферах нашей жизни и перечислять их можно бесконечно долго, поэтому мы укажем несколько из них:

  • графит используется в грифелях карандашей и изготовлении электродов;
  • алмазы нашли свое широкое применение в ювелирной сфере и в буровом деле;
  • углерод используют как восстановитель для выведения таких элементов, как железная руда и кремний ;
  • активированный уголь, состоящий в основном из этого элемента, широко используется в медицинской области, промышленности и в быту.

Похожие публикации