Связи и реакции связей теоретическая механика. Основные виды связей и их реакции

Основной закон статики сформулирован для так называемых свободных систем , в которых все внешние силы являются задаваемыми , не зависящими от других сил. Вместе с тем, многие инженерные задачи сводятся к рассмотрению равновесия или движения систем, перемещения точек которых ограничены. В таких случаях возможно появление зависимости между внешними силами.

Тело, перемещениям которого в пространстве препятствуют какие-либо другие тела - связи , называют несвободным. В местах контакта системы со связью возникают силы.

Силу, с которой данная связь воздействует на тело, препятствуя его перемещению, называют силой реакции связи , или просто реакцией связи. Она равна по модулю силе давления на связь и противоположна ей по направлению. Введение реактивных сил приводит к разделению внешних сил, действующих на систему, на две группы:

  • задаваемые (активные) - это силы, величины которых могут не зависеть от других сил и назначаться произвольно. Эти силы не исчезают при удалении всех связей;
  • реакции связей (реактивные ) - это силы, появляющиеся после отбрасывания связей, величины которых зависят от активных сил. Реакции связей, как правило, неизвестны. Для их определения

надо решить задачу статики, рассматривая равновесие системы, или задачу исследования движения (в общем случае).

Указанный ранее подход учета влияния связей часто называют принципом освобождаемости. Заметим, что этот способ не является единственным. В гл. 4 изложена методика, согласно которой наличие связей учитывают на основании кинематических соображений.

Направление и точку приложения реакции связи в виде сосредоточенной силы устанавливают на основании опыта в зависимости от конструкции связи. Правильное определение направлений реакций связи очень важно при решении задач механики. Приведем некоторые примеры связей и их реакций.

Гладкая поверхность - это поверхность, трением о которую можно пренебречь (связи без трения относятся к так называемым идеальным связям). Реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкосновения тел в точке касания и приложена к этой точке (рис. 1.10,я). В случае, когда поверхности контакта тела и связи - плоскости, положение точки приложения реакции (координатах) заранее не определено и находится из условий равновесия (рис. 1.10,6). Если одна из соприкасающихся поверхностей в месте контакта вырождается в точку, то реакция направлена по нормали к другой поверхности (рис. 1.10,с).

Рис. 1.10.

Нить. Реакция связи Г, выполненной в виде гибкой нити, направлена вдоль нити к точке ее подвеса (рис. 1.11).

Рис. 1.11.

Цилиндрический шарнир (подшипник). В зависимости от системы сил, приложенной к телу, вал шарнира может прижиматься к различным точкам внутренней поверхности «обоймы», из-за чего даже при отсутствии трения реакция такого шарнира неизвестна по направлению. Можно лишь утверждать, что главный вектор Я реактивных сил цилиндрического идеального шарнира расположен в

плоскости ху у перпендикулярной к оси шарнира, и проходит через центр шарнира. Для силы Я в этом случае наперед не известны ни

ее модуль

ни ее направление Za (рис. 1.12).

Рис. 1.12.

При решении практических задач часто силу Я заменяют ее двумя эквивалентными составляющими, направленными вдоль осей координат X и У (см. рис. 1.12).

Ненагруженный стержень - это стержень, на который не действуют силы по его длине ЛВ (рис. 1.13). Две силы, приложенные на концах такого стержня УУ"и могут его уравновесить только

тогда, когда они равны по модулю и направлены по одной прямой в противоположные стороны. Следовательно, реакция N невесомого шарнирно закрепленного стержня направлена вдоль линии, соединяющей центры шарниров, которыми стержень прикреплен к рассматриваемому телу и другой связи.

В процессе решения задач статики для несвободного твердого тела обычно отбрасывают все связи и применяют условия равновесия для свободного тела.

1. Гладкая плоскость (поверхность) или опора. Гладкой называется поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен­дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис.7, а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри­касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 7, б ), то реакция направлена по нормали к другой поверх­ности.

Если поверхности не гладкие, надо добавить еще одну силу – силу трения , которая направлена перпендикулярно нормальной реакции в сторону, противоположную возможному скольжению тела.

Рис. 7

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис. 8), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса.

Рис. 8

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен­ное шарниром к опоре D (рис.9, а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен­дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен­дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле­ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп­ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При­мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото­аппарат к штативу (рис.9, б ) и подшипник с упором (подпятник) (рис. 9, в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис. 9

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.10). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре­небречь. Тогда на стержень будут действовать только две силы при­ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко­торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

Рис.10

6. Подвижная шарнирная опора (рис.11, опора А ) препятствует движению тела только в направ­лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.11, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и , то тем самым будет определена и реакция ; по модулю

Рис.11

Способ закрепления, показанный на рис.11, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.11) сделать тоже непо­движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой­дут четыре неизвестные реакции , , , .

8. Неподвижная защемляющая опора или жесткая заделка (рис.12). В этом случае на заделанный конец балки со стороны опорных плоско­стей действует система распределенных сил реакций. Считая эти силы приведен­ными к центру А , мы можем их заменить одной наперед неизвестной силой , приложенной в этом центре, и парой с наперед неизвестным моментом . Силу можно в свою очередь изобразить ее составляющими и . Таким образом, для нахождения реакции неподвижной защемляющей опоры надо определить три неизвестных величины , и . Если под такую балку где-нибудь в точке В подвести еще одну опору, то балка станет статически неопределимой.

Рис.12

При определении реакций связи других конструкций надо установить, разре­шает ли она двигаться вдоль трех взаимно перпендикулярных осей и вращаться вокруг этих осей. Если препятствует какому-либо движению – показать соот­ветствующую силу, если препятствует вращению – пару с соответствующим моментом.

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

Пример 1. На невесомую трехшарнирную арку действует горизонтальная сила (рис.13). Определить линию действия реакции (реакции связи в точке А ).

Решение: Рассмотрим правую часть арки отдельно. В точках В и С приложим силы реакции связей и . Тело под действием двух сил находится в равновесии. Согласно аксиоме о равновесии двух сил, силы и равны по величине и действуют вдоль одной прямой в противоположные стороны. Таким образом, направление силы нам известно (вдоль линии ВС ).

Рис. 13

Рассмотрим левую часть арки отдельно. В точках А и С приложим силы реакции связей и . Сила , действие равно противодействию. На тело действуют три силы, направления двух сил ( и .) известно. Согласно теореме о трех силах линии действия всех трех сил пресекаются в одной точке. Следовательно, сила направлена вдоль линии AD . направлена вдоль линии .

Заключительная часть

Напомнить, что на данном занятии рассмотрены основные понятия статики: пара сил, момент пары сил, связи, реакции связей.

Ответить на вопросы курсантов.

Дать задание на самоподготовку.

V. Задание на самоподготовку

1. Проанализировать материал конспекта.

2. Изучить вопросы: основная задача статики, аналитические условия равновесия произвольной системы сил.


VI. Литература

1. Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической

механики в 2 томах. – СПб: Лань, 2008, 736 с.

2. Яблонский А.А., Никифорова В.М. Курс теоретической механики. Ч.1. Статика. Кинематика. М.: Высш. шк., 2004 г.

3. Цывильский В.Л. Теоретическая механика. М.: Высш.шк., 2004. – 343 с.

Разработал ____________________________________________________

(подпись, должность, фамилия, звание)

«___» ______________2012 г.

Тела, рассматриваемые в механике, могут быть сво­бодными и несвободными .

Свободным называют тело, которое не испытывает никаких препятствий для перемещения в пространстве в любом направлении. Если же тело связано с другими телами, которые ограничивают его движение в одном или нескольких направлениях, то оно является несвободным .

Тела, которые ограничивают движение рассматриваемого тела называют связями .

В результате взаимодействия между телом и его свя­зями возникают силы , противодействующие возможным движениям тела . Эти силы действуют на тело со стороны связей и называются реакциями связей.

Реакция связи всегда противоположна тому направле­нию, по которому связь препятствует движению тела.

Определение реакций связей является одной из наи­более важных задач статики. Ниже приведены наиболее распространенные виды связей, встречающиеся в меха­нике.

Связь в виде гладкой (т. е. без учета сил трения) плоскости или поверхности (рис.а, б ). В этом случае реакция связи всегда направлена по нормали к опорной поверхности .

Связь в виде шероховатой плоскости (рис. в ). Здесь возникают две составляющие реакции: нормальная N , перпендикулярная плоскости, и касательная Т , лежащая в плоскости. Касательная реакция Т называется силой трения и всегда направлена в сторону, противоположную действительному или возможному движению тела.

Полная реакция R , равная геометрической сумме нормальной и касательной составляющих

R =N + Т , отклоняется от нормали к опорной поверхности на некоторый угол ρ .

При взаимодействии тела с реальными связями возни­кают силы трения . Однако во многих случаях силы тре­ния незначительны и вследствие этого ими часто пренебре­гают , т. е. считают связи абсолютно гладкими .

Связи , в которых отсутствуют силы трения , называют идеальными . Приведенная выше связь в виде гладкой плоскости или поверхности относится к категории иде­альных .

Гибкая связь, осуществляемая веревкой, тросом, цепью и т. п. (рис. г ). Реакция гибкой связи направ­лена вдоль связи, причем гибкая связь может работать только на растяжение .

Связь в виде жесткого стержня с шарнирным закреп­лением концов (рис.д ). Здесь реакции, так же как и в гибкой связи, всегда направлены вдоль осей стерж­ней , но стержни могут быть как растянутыми, так и сжа­тыми .

Связь, осуществляемая ребром двугранного угла или точечной опорой (рис.е ). Реакция такой связи направлена перпендикулярно поверхности опирающегося тела, если эту поверхность можно считать гладкой .

Существование реакций связей обосновывается . Для определения реакций связей используют прием освобождения от связей.

Вот этот прием. Не изменяя равновесия тела или системы тел, каждую связь, наложенную на систему, можно отбросить, заменив ее действием реакции отброшенной связи.

КУРС ЛЕКЦИЙ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

Лекция 1

Теоретическая механика - это наука о наиболее общих законах механиче­ского движения и равновесия материальных объектов.

Основные понятия и определения теоретической механики возникли на ос­новании многочисленных опытов и наблюдений над явлениями природы с по­следующим абстрагированием от конкретных условий каждого опыта. В теоре­тической механике пользуются предельными абстракциями: материальная точка и абсолютно твердое тело. Приведенные абстракции позволяют изучать самые общие законы механического движения, что и соответствует основной задаче теоретической механики. Теоретическая механика является основой для изучения таких дисциплин как сопротивление материалов и дета­ли машин.

Курс теоретической механики состоит из трех частей: статики, кинематики и динамики.

Статика – раздел теоретической механики, в котором изучается статическое равновесие материальных тел, находящихся под действием приложенных к ним сил.

Основные понятия статики:

1. Если некоторое тело не перемещается по отношению к другому телу, то говорят, что первое тело находится в состоянии относительного равнове­сия. Тело, по отношению к которому рассматривается равновесие других тел, называется телом отсчета.

2. Любое тело под действием приложенных к нему сил изменяет свои гео­метрические размеры и форму, т.е. деформируется. В теоретической ме­ханике эти деформации не учитываются и рассматриваются только недеформируемые – абсолютно твердые тела. Тело называется абсолютно твердым, если расстояние между его любыми двумя точками остается по­стоянным.

3. Мерой механического взаимодействия тел является сила. Сила – вели­чина векторная, она характеризуется точкой приложения, направлением и модулем (рис. 1.1). Единица измерения силы – нью­тон (Н).

4. Совокупность сил, действующих на какое-либо тело, называется системой сил. Обозначается сис­тема сил { , , , … } – система, состоящая из n сил.

5. Уравновешенной, или эквивалентной нулю, системой сил называется та­кая система сил, которая, будучи приложенной к твердому телу, не нару­шает его состояния. То есть, если некоторое тело не изменяло свое поло­жение относительно тела отсчета до приложения уравновешенной сис­темы сил, то оно не изменит его и после приложения к нему этой сис­темы. Обозначается уравновешенная система сил так: { , , , … }<=>0 (<=> - знак эквивалентности).

6. Если к некоторому телу приложена система сил { , , , … } и к нему прикладываем еще одну систему сил { , , , … }, такую, что вместе с первой она будет составлять уравновешенную систему сил. В этом случае систему { , , , … }называют уравновешивающей системой сил. Если уравновешивающая система состоит из одной силы , то эта сила называется уравновешивающей силой для системы сил { , , , … }.


7. Если каждая из двух систем сил { , , , … } и { , , , … } уравновешиваются одной и той же системой сил { , , , … }, то первые две системы сил эквивалентны между собой { , , , … } <=>{ , , , … }. Вывод: замена системы сил, действующей на тело, системой ей эквивалентной не изменяет состояния, в котором находится данное тело.

8. Если система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил.

Аксиомы статики

Аксиома 1. Свободное абсолютно твердое тело находится в равновесии под действием двух сил, тогда и только тогда, когда силы действуют по одной прямой в противоположные стороны и имеют равные модули.

Аксиома 2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней присоединить или от нее отбросить систему сил эквивалентную нулю.

{ , , , … } <=> { , , , … , , , , … };

{ , , , … } <=> 0


{ , } <=>

Аксиома 4. Силы взаимодействия двух тел равны по величине и направлены по одной прямой в противоположные стороны.

Тело называется свободным , если его перемещения в пространстве ничем не ограничены. Если на перемещение точек тела накладываются ограничения, то тело называется несвободным или связанным. Материальные тела, ограничивающие перемещения данного тела называются связями. Сила, с которой связь действует на данное тело, называется реакцией связи. Сила действует на связь, а реакция связи на тело.

Аксиома 5. (Аксиома освобождения от связей). Равновесие тела не нарушится, если наложенные на него связи заменить реакциями связей.

Аксиома 6. (Аксиома о затвердевании). Равновесие деформируемого тела не изменится, если на него наложить дополнительные связи или оно станет абсолютно твердым.

Следствия из аксиом

Следствие 1. Силу, приложенную к абсолютно твердому телу, можно переносить в любую точку ее линии действия. При этом действие силы на тело не изменится.

Доказательство:

Пусть на твердое тело действует сила , приложенная к точке А (рис. 1.4). Приложим в некоторой точке В линии действия силы F систему сил { , } <=> 0, что допускается на основании Аксиомы 2. Примем = = . В результате получим систему сил { , , } <=> .

Заметим, что { , } <=> 0, на основании аксиомы 2 эту систему сил можно отбросить. Получаем <=>{ , , }<=> .

Вывод: Сила является скользящим вектором.

Следствие 2. Теорема о необходимом условии равновесия тела, находящимся под действием трех непараллельных сил, лежащих в одной плоскости.

Если свободное тело находится в состоянии равновесия под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке.

Доказательство:

Пусть к телу приложены три силы , , (рис. 1.5). { , , } <=> 0. По­скольку линии действия сил непараллельны, то любые две из них (пусть и ) пересекутся в некоторой точке О . Перенесем F 1 и F 2 в точку О и заменим эти силы равнодействующей . Получим { , , } <=> { , }, а для того чтобы тело находилось в равновесии, необходимо выполнение условия: = , и они должны быть направлены по одной прямой в противоположные стороны. То есть линия действия силы должна проходить через точку пересечения линий действия сил и .

Лекция 2

Виды связей и их реакции

При решении технических задач возникает необходимость поиска реакций различных связей. Общее правило, которое следует применять, состоит в следующем: если ограничиваются перемещения какой-либо точки тела, то реакцию следует прикладывать в этой точке в сторону, противоположную направлению, в котором ограничивается перемещение.

Основные типы связей:

1. Гладкая поверхность или опора. Гладкой считается поверхность, трением о которую можно пренебречь. Реакция гладкой поверхности сводится только к реакции , направленной по общей нормали к контактирующим поверхностям, в предположении, что эта нормаль существует (рис. 2.1.а). Если общей нормали не существует, то есть одна из поверхностей имеет угловую точку или «заострение», реакция направлена по нормали к другой поверхности (рис. 2.1.б).


3. Гибкая связь. К этому типу связи относятся связи, осуществляемые с помощью цепи, троса, каната и т. д. Реакция такой связи всегда направлена вдоль связи (рис. 2.3).

4. Цилиндрический шарнир (рис. 2.4) и подшипник (опора В рис.2.5). Цилиндрическим шарниром на­зывается соединение двух или более тел по­средством цилиндрического стержня, так называемого пальца, вставленного в отверстия в этих телах. Цилиндрический шарнир препятствует перемеще­нию по любому направ­лению в плоскости ХОY. Реакция неподвижного цилиндрического шарнира (шарнирно-неподвижной опоры) представляется в виде неиз­вестных составляющих и , линии действия которых парал­лельны или совпадают с осями ко­ординат (рис. 2.4).

5. Подпятник (опора А рис. 2.5) и сферический шарнир (рис. 2.6). Та­кой вид связи можно представить в виде стержня, имеющего на конце сферическую поверхность, которая крепится в опоре, представляющей собой часть сферической полости. Сферический шарнир препятствует пере­мещению по любому направлению в пространстве, поэтому реакция его представляется в виде трех составляющих , , , параллельных соответ­ствующим координатным осям.

6.



Шарнирно-подвижная опора. Этот вид связи конструктивно выполняется в виде цилиндрического шарнира, кото­рый может свободно переме­щаться вдоль поверхности. Реакция шарнирно-подвижной опоры всегда направлена перпендикулярно опорной поверх­ности (опора А рис. 2.7).

7. Шарнирно-неподвижная опора. Реакция шарнирно-неподвиж­ной опоры представляется в виде неизвестных составляющих и , линии действия которых па­раллельны или совпадают с осями коорди­нат (опора В рис. 2.7).

8. Невесомый стержень (прямолинейный или криволинейный), закреплен­ный по концам шарнирами. Реакция такого стержня является определен­ной и направлена вдоль линии, соединяющей центры шарниров (рис. 2.8).


9. Жесткая заделка. Это необычный вид связи, так как кроме препятствия перемещению в плоскости ХОY, жесткая заделка препятствует повороту стержня (балки) относительно точки А . Поэтому реакция связи сводится не только к реакции R (R а x , R а y), но и к реактивному моменту М ра (рис. 2.9).

По определению, тело, которое может совершать из данного положения любые перемещения в пространство, называется свободным, (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним, тела, называется несвободным. Все то, что ограничивает перемещения данного тела в пространстве, называют связью. В дальнейшем будем рассматривать связи, реализуемые какими-нибудь телами, и называть связями сами эти тела.

Примерами несвободных тел являются груз, лежащий на столе, дверь, подвешенная на петлях, и т. п. Связями в этих случаях будут: для груза - плоскость стола, не дающая грузу перемещаться по вертикали вниз; для двери - петли, не дающие двери отойти от косяка.

Тело, стремясь под действием приложенных сил осуществить перемещение, которому препятствует связь, будет действовать на нее с некоторой силой, называемой силой давления на связь. Одновременно по закону о равенстве действия и противодействия связь будет действовать на тело с такой же по модулю, но противоположно направленной силой. Сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Значение реакции связи зависит от других действующих сил и наперед неизвестно (если никакие другие силы на тело не действуют, реакции равны нулю); для ее определения надо решить соответствующую задачу механики. Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь может препятствовать перемещениям тела по нескольким направлениям, направление реакции такой связи тоже наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Правильное определение направлений реакций связей играет при решении задач механики очень важную роль.

Рассмотрим поэтому подробнее, как направлены реакции некоторых основных видов связей (дополнительные примеры приведены в § 17).

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпендикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис. 8, а). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 8, б), то реакция направлена по нормали к другой поверхности.

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис. 9), не дает телу М удаляться от точки подвеса нити по направлению AM. Поэтому реакция Т натянутой нити направлена вдоль нити к точке ее подвеса.

3. Цилиндрический шарнир (подшипник). Цилиндрический шарнир (или просто шарнир) осуществляет такое соединение двух тел, при котором одно тело может вращаться по отношению к другому вокруг общей оси, называемой осью шарнира (например, как две половины ножниц). Если тело АВ прикреплено с помощью такого шарнира к неподвижной опоре D (рис. 10), то точка А тела не может при этом переместиться ни по какому направлению, перпендикулярному оси шарнира. Следовательно, реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпендикулярной оси шарнира, т. е. в плоскости . Для силы R в этом случае наперед неизвестны ни ее модуль R, ни направление (угол а).

4. Сферический шарнир и подпятник. Тела, соединенные сферическим шарниром, могут как угодно поворачиваться одно относительно другого вокруг центра шарнира.

Примером служит прикрепление фотоаппарата к штативу с помощью шаровой пяты. Если тело прикреплено с помощью такого шарнира к неподвижной опоре (рис. 11, а), то точка А тела, совпадающая с центром шарнира, не может при этом совершить никакого перемещения в пространстве. Следовательно, реакция R сферического шарнира может иметь любое направление в пространстве. Для нее наперед неизвестны ни ее модуль R, ни углы с осями Axyz.

Произвольное направление в пространстве может иметь и реакция R подпятника (подшипника с упором), изображенного на рис. 11,б.

5. Невесомый стержень. Невесомым называют стержень, весом которого по сравнению с воспринимаемой им нагрузкой можно пренебречь. Пусть для какого-нибудь находящегося в равновесии тела (конструкции) такой стержень, прикрепленный в точках А я В шарнирами, является связью (рис. 12, а). Тогда на стержень будут действовать только две силы, приложенные в точках А и В; при равновесии эти силы должны быть направлены вдоль одной прямой, т. е. вдоль АВ (см. рис. 4, а, в). Но тогда согласно закону о действии и противодействии стержень будет действовать на тело с силой, тоже направленной вдоль АВ. Следовательно, реакция N невесомого шарнирно прикрепленного прямолинейного стержня направлена вдоль оси стержня.

Если связью является криволинейный невесомый стержень (рис. 12,б), то аналогичные рассуждения приведут к выводу, что его реакция тоже направлена вдоль прямой АВ, соединяющей шарниры А и В (на рис. 12,а направление реакции соответствует случаю, когда стержень сжат, а на рис. 12, б - когда растянут).

При решении задач реакции связей обычно являются подлежащими определению неизвестными. Нахождение реакций имеет то практическое значение, что определив их, а тем самым определив по закону о действии и противодействии и силы давления на связи, получают исходные данные, необходимые для расчета прочности соответствующих частей конструкции.


Похожие публикации