Другие солнечные системы галактики. Место земли в галактике, и наши ближайшие звездные соседи

Вселенная (космос) — это весь окружающий нас мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает вечно движущаяся материя. Безграничность Вселенной отчасти можно представить в ясную ночь с миллиардами разной величины светящихся мерцающих точек на небе, представляющих далекие миры. Лучи света при скорости 300 000 км/с из наиболее отдаленных частей Вселенной доходят до Земли примерно за 10 млрд лет.

По мнению ученых, образовалась Вселенная в результате «Большого Взрыва» 17 млрд лет назад.

Она состоит из скоплений звезд, планет, космической пыли и других космических тел. Эти тела образуют системы: планеты со спутниками (например. Солнечная система), галактики, метагалактики (скопление галактик).

Галактика (позднегреч.galaktikos - молочный, млечный, от греческогоgala - молоко) — обширная звездная система, которая состоит из множества звезд, звездных скоплений и ассоциаций, газовых и пылевых туманностей, а также отдельных атомов и частиц, рассеянных в межзвездном пространстве.

Во Вселенной существует множество галактик различного размера и формы.

Все звезды, видимые с Земли, входят в состав галактики Млечный Путь. Свое название она получила благодаря тому, что большинство звезд можно увидеть ясной ночью в виде Млечного Пути — белесой размытой полосы.

Всего же Галактика Млечный Путь содержит около 100 млрд звезд.

Наша галактика находится в постоянном вращении. Скорость ее движения во Вселенной — 1,5 млн км/ч. Если смотреть на нашу галактику со стороны ее северного полюса, то вращение происходит по часовой стрелке. Солнце и ближайшие к нему звезды совершают полный оборот вокруг центра галактики за 200 млн лет. Этот срок принято считать галактическим годом.

По размеру и форме сходна с галактикой Млечный Путь галактика Андромеды, или Туманность Андромеды, которая находится на расстоянии примерно 2 млн световых лет от нашей галактики. Световой год — расстояние, проходимое светом за год, приблизительно равное 10 13 км (скорость света — 300 000 км/с).

Для наглядности изучения движения и расположения звезд, планет и других небесных тел используется понятие небесной сферы.

Рис. 1. Основные линии небесной сферы

Небесная сфера — это воображаемая сфера сколь угодно большого радиуса, в центре которой находится наблюдатель. На небесную сферу проецируются звезды, Солнце, Луна, планеты.

Важнейшими линиями на небесной сфере являются: отвесная линия, зенит, надир, небесный экватор, эклиптика, небесный меридиан и др. (рис. 1).

Отвесная линия — прямая, проходящая через центр небесной сферы и совпадающая с направлением нити отвеса в месте наблюдения. Для наблюдателя, находящегося на поверхности Земли, отвесная линия проходит через центр Земли и точку наблюдения.

Отвесная линия пересекается с поверхностью небесной сферы в двух точках - зените, над головой наблюдателя, и надире — диаметрально противоположной точке.

Большой круг небесной сферы, плоскость которого перпендикулярна к отвесной линии, называется математическим горизонтом. Он делит поверхность небесной сферы на две половины: видимую для наблюдателя, с вершиной в зените, и невидимую, с вершиной в надире.

Диаметр, вокруг которого происходит вращение небесной сферы, - ось мира. Она пересекается с поверхностью небесной сферы в двух точках - северном полюсе мира и южном полюсе мира. Северным полюсом называется тот, со стороны которого вращение небесной сферы происходит по часовой стрелке, если смотреть на сферу извне.

Большой круг небесной сферы, плоскость которого перпендикулярна оси мира, носит название небесного экватора. Он делит поверхность небесной сферы на два полушария: северное, с вершиной в северном полюсе мира, и южное, с вершиной в южном полюсе мира.

Большой круг небесной сферы, плоскость которого проходит через отвесную линию и ось мира, — небесный меридиан. Он делит поверхность небесной сферы на два полушария - восточное и западное.

Линия пересечения плоскости небесного меридиана и плоскости математического горизонта - полуденная линия.

Эклиптика (от греч.ekieipsis - затмение) — большой круг небесной сферы, по которому происходит видимое годичное движение Солнца, точнее — его центра.

Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°26"21".

Чтобы легче запомнить местоположение звезд на небе, люди в древности придумали объединять самые яркие из них в созвездия.

В настоящее время известны 88 созвездий, которые носят имена мифических персонажей (Геркулес, Пегас и др.), знаков зодиака (Телец, Рыбы, Рак и др.), предметов (Весы, Лира и др.) (рис. 2).

Рис. 2. Летне-осенние созвездия

Происхождение галактик. Солнечной системы и ее отдельных планет, до сих пор остается неразгаданной тайной природы. Существует несколько гипотез. В настоящее время считается, что наша галактика образовалась из газового облака, состоявшего из водорода. На начальной стадии эволюции галактики из межзвездной газово-пылевой среды образовались первые звезды, а 4,6 млрд лет назад — Солнечная система.

Состав солнечной системы

Совокупность небесных тел, движущихся вокруг Солнца как центрального тела, образует Солнечную систему. Она расположена почти на окраине галактики Млечный Путь. Солнечная система участвует во вращении вокруг центра галактики. Скорость се движения составляет около 220 км/с. Это движение происходит в направлении созвездия Лебедя.

Состав Солнечной системы можно представить в виде упрощенной схемы, приведенной на рис. 3.

Свыше 99,9 % массы вещества Солнечной системы приходится на Солнце и только 0,1 % — на все остальные ее элементы.

Гипотеза И. Канта (1775 г.) — П.Лапласа (1796 г.)

Гипотеза Д. Джинса (начало XX в.)

Гипотеза академика О. П. Шмидта (40-е гг. XX в.)

Ги потеза а кале мика В. Г. Фесенкова (30-е гг. XX в.)

Планеты образовались из газово-пылевой материи (в виде раскаленной туманности). Охлаждение сопровождаюсь сжатием и увеличением скорости вращения какой-то оси. На экваторе туманности возникали кольца. Вещество колец собиралось в раскаленные тела и постепенно остывало

Мимо Солнца когда-то прошла более крупная звезда, сс притяжение вырвало из Солнца струю раскаленного вещества (протуберанец). Образовались сгущения, из которых потом — планеты

Газово-пылевое облако, вращающееся вокруг Солнца, должно было принять сплошную форму в результате соударения частиц и их движения. Частицы объединились в сгущения. Притяжение более мелких частиц сгущениями должно было способствовать росту окружающего вещества. Орбиты сгущений должны были стать почти круговыми и лежащими почти в одной плоскости. Сгущения явились зародышами планет, вобрав в себя почти всс вещество из промежутков между их орбитами

Из вращающегося облака возникло само Солнце, а планеты — из вторичных сгущений в этом облаке. Далее Солнце сильно уменьшилось и охладилось до современного состояния

Рис. 3. Состав Солнечной систем

Солнце

Солнце — это звезда, гигантский раскаленный шар. Его диаметр в 109 раз больше диаметра Земли, масса в 330 000 раз больше массы Земли, зато средняя плотность невелика — всего в 1,4 раза больше плотности воды. Солнце находится на расстоянии около 26 000 световых лет от центра нашей галактики и обращается вокруг него, делая один оборот примерно за 225-250 млн лет. Орбитальная скорость движения Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет.

Рис. 4. Химический состав Солнца

Давление на Солнце в 200 млрд раз выше, чем у поверхности Земли. Плотность солнечного вещества и давление быстро нарастают вглубь; рост давления объясняется весом всех вышележащих слоев. Температура на поверхности Солнца 6000 К, а внутри 13 500 000 К. Характерное время жизни звезды типа Солнца 10 млрд лег.

Таблица 1. Общие сведения о Солнце

Химический состав Солнца примерно такой же, как и у большинства других звезд: около 75 % — это водород, 25 % — гелий и менее 1 % — все другие химические элементы (углерод, кислород, азот и т. д.) (рис. 4).

Центральная часть Солнца с радиусом примерно 150 000 км называется солнечным ядром. Это зона ядерных реакций. Плотность вещества здесь примерно в 150 раз выше плотности воды. Температура превышает 10 млн К (по шкале Кельвина, в пересчете на градусы Цельсия 1 °С = К — 273,1) (рис. 5).

Над ядром, на расстояниях около 0,2-0,7 радиуса Солнца от его центра, находится зона переноса лучистой энергии. Перенос энергии здесь осуществляется путем поглощения и излучения фотонов отдельными слоями частиц (см. рис. 5).

Рис. 5. Строение Солнца

Фотон (от греч.phos - свет), элементарная частица, способная существовать, только двигаясь со скоростью света.

Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается

преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а слой Солнца, где она происходит, - конвективной зоной. Мощность этого слоя составляет примерно 200 000 км.

Выше конвективной зоны располагается солнечная атмосфера, которая постоянно колеблется. Здесь распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания происходят с периодом около пяти минут.

Внутренний слой атмосферы Солнца называется фотосферой. Она состоит из светлых пузырьков. Это гранулы. Их размеры невелики — 1000-2000 км, а расстояние между ними — 300- 600 км. На Солнце одновременно может наблюдаться около миллиона гранул, каждая из которых существует несколько минут. Гранулы окружены темными промежутками. Если в гранулах вещество поднимается, то вокруг них — опускается. Гранулы создают общий фон, на котором можно наблюдать такие масштабные образования, как факелы, солнечные пятна, протуберанцы и др.

Солнечные пятна — темные области на Солнце, температура которых по сравнению с окружающим пространством понижена.

Солнечными факелами называют яркие поля, окружающие солнечные пятна.

Протуберанцы (от лат.protubero — вздуваюсь) — плотные конденсации относительно холодного (по сравнению с окружающей температурой) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем. К возникновению магнитного поля Солнца может приводить то, что различные слои Солнца вращаются с разной скоростью: внутренние части вращаются быстрее; особенно быстро вращается ядро.

Протуберанцы, солнечные пятна и факелы — это не единственные примеры солнечной активности. К ней также относятся магнитные бури и взрывы, которые называют вспышками.

Выше фотосферы располагается хромосфера — внешняя оболочка Солнца. Происхождение названия этой части солнечной атмосферы связано с ее красноватым цветом. Мощность хромосферы составляет 10-15 тыс. км, а плотность вещества в сотни тысяч раз меньше, чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. На краю хромосферы наблюдаются спикулы, представляющие собой вытянутые столбики из уплотненного светящегося газа. Температура этих струй выше, чем температура фотосферы. Спикулы сначала поднимаются из нижней хромосферы на 5000-10 000 км, а потом падают обратно, где и затухают. Все это происходит со скоростью около 20 000 м/с. Спи кула живет 5-10 мин. Количество спикул, существующих на Солнце одновременно, составляет около миллиона (рис. 6).

Рис. 6. Строение внешних слоев Солнца

Хромосферу окружает солнечная корона — внешний слой атмосферы Солнца.

Полное количество энергии, излучаемой Солнцем, составляет 3,86 . 1026 Вт, и лишь одну двухмиллиардную часть этой энергии получает Земля.

Солнечная радиация включает корпускулярное и электромагнитное излучения. Корпускулярное основное излучение — это плазменный поток, который состоит из протонов и нейтронов, или по-другому - солнечный ветер, который достигает околоземного пространства и обтекает всю магнитосферу Земли. Электромагнитная радиация — это лучистая энергия Солнца. Она в виде прямой и рассеянной радиации достигает земной поверхности и обеспечивает тепловой режим на нашей планете.

В середине XIX в. швейцарский астроном Рудольф Вольф (1816-1893) (рис. 7) вычислил количественный показатель солнечной активности, известный во всем мире как число Вольфа. Обработав накопленные к середине прошлого века материалы наблюдений за солнечными пятнами, Вольф смог установить средний И-летний цикл солнечной активности. Фактически же интервалы времени между годами максимальных или минимальных чисел Вольфа колеблются от 7 до 17 лет. Одновременно с 11-летним циклом протекает вековой, точнее 80-90-летний, цикл солнечной активности. Несогласованно накладываясь друг на друга, они вносят заметные изменения в процессы, совершающиеся в географической оболочке Земли.

На тесную связь многих земных явлений с солнечной активностью еще в 1936 г. указывал А. Л. Чижевский (1897-1964) (рис. 8), писавший о том, что подавляющее большинство физико-химических процессов на Земле представляет результат воздействия космических сил. Он же был и одним из основоположников такой науки, как гелиобиология (от греч.helios — солнце), изучающей влияние Солнца на живое вещество географической оболочки Земли.

В зависимости от солнечной активности протекают такие физические явления на Земле, как: магнитные бури, частота полярных сияний, количество ультрафиолетовой радиации, интенсивность грозовой деятельности, температура воздуха, атмосферное давление, осадки, уровень озер, рек, грунтовых вод, соленость и деловитость морей и др.

С периодической деятельностью Солнца связана жизнь растений и животных (существует корреляция между солнечной цикличностью и сроком вегетационного периода у растений, размножением и миграцией птиц, грызунов и т. д.), а также человека (заболевания).

В настоящее время взаимосвязи между солнечными и земными процессами продолжают изучаться с помощью искусственных спутников Земли.

Планеты земной группы

Помимо Солнца в составе Солнечной системы выделяют планеты (рис. 9).

По размерам, географическим показателям и химическому составу планеты подразделяются на две группы: планеты земной группы и планеты-гиганты. К планетам земной группы относятся , и . О них и пойдет речь в этом подразделе.

Рис. 9. Планеты Солнечной системы

Земля — третья планета от Солнца. Ей будет посвящен отдельный подраздел.

Давайте обобщим. От местоположения планеты в Солнечной системе зависит плотность вещества планеты, а с учетом ее размеров — и масса. Чем
ближе планета к Солнцу, тем выше у нее средняя плотность вещества. Например, у Меркурия она составляет 5,42 г/см\ Венеры — 5,25, Земли — 5,25, Марса — 3,97 г/см 3 .

Общими характеристиками планет земной группы (Меркурий, Венера, Земля, Марс) являются прежде всего: 1) сравнительно небольшие размеры; 2) высокие температуры на поверхности и 3) высокая плотность вещества планет. Эти планеты сравнительно медленно вращаются вокруг своей оси и имеют мало спутников или не имеют их совсем. В строении планет земной группы выделяют четыре главные оболочки: 1) плотное ядро; 2) покрывающую его мантию; 3) кору; 4) легкую газо- во-водную оболочку (исключая Меркурий). На поверхности этих планет обнаружены следы тектонической деятельности.

Планеты-гиганты

Теперь познакомимся с планетами-гигантами, которые тоже входят в нашу Солнечную систему. Это , .

Планеты-гиганты обладают следующими общими характеристиками: 1) большими размерами и массой; 2) быстро вращаются вокруг оси; 3) имеют кольца, много спутников; 4) атмосфера состоит, в основном, из водорода и гелия; 5) в центре имеют горячее ядро из металлов и силикатов.

Их также отличают: 1) низкие температуры на поверхности; 2) малая плотность вещества планет.

Первую экзопланету — планету, находящуюся вне Солнечной системы и вращающуюся вокруг другой звезды нашей галактики, — астрономы обнаружили около 20 лет назад. За последние 15 лет экспериментальные технологии наблюдения звездного неба значительно усовершенствовали, и к сегодняшнему дню ученым удалось наблюдать уже около 500 экзопланет, некоторые из которых . Однако обнаружить планеты, принадлежащие звездам вне Млечного Пути, пока не удавалось. Планеты очень малы и тусклы по сравнению со звездами, поэтому наблюдать их гораздо сложнее.

Астрономы Европейской южной обсерватории (ESO, Чили) сообщили в статье в журнале Science о наблюдении первой такой планеты. Хотя сейчас эта планета и ее звезда находятся в пределах Млечного Пути, ученые имеют все основания предполагать, что родились она в далеком космосе. Таким образом,

ученым удалось обнаружить первую внегалактическую экзопланету.

Планета HIP 13044 b имеет массу около 1,25 массы Юпитера и вращается вокруг умирающей звезды из карликовой галактики, поглощенной Млечным Путем. Планета уникальна еще по одной причине: ее звезда сейчас переживают такую же «старость», которая ждет и Солнце

В течение большей части жизни звезды в ней происходит процесс, за счет которого сейчас мы получаем энергию от Солнца: термоядерный синтез гелия из водорода. Но когда водород «выгорает», начинают «гореть» гелий и другие, более тяжелые элементы, в результате звезда значительно увеличивается в размерах и превращается в красного гиганта. Предполагается, что, когда Солнце достигнет этой стадии жизни, оно поглотит ближайшие к нему планеты. С этим согласуются новые наблюдения звезды HIP 13044: она вращается необычно быстро для звезд своего класса. Возможно, это означает, что, став красным гигантом, она как раз поглотила ближайшие планеты своей системы.

В зависимости от массы звезды ее судьба после стадии красного гиганта может быть различной: процессы «горения» могут прекратиться — небольшие звезды, вроде Солнца, превращаются в так называемых белых карликов. Массивные звезды заканчивают свою жизнь в качестве нейтронной звезды или черной дыры. Планетные системы этих звезд на поздних этапах жизни (в частности, переживших стадию красного гиганта) изучены пока очень плохо.

«Мы бы хотели понять, как обнаруженная планета может пережить стадию красного гиганта своей звезды. Это приоткроет для нас окно в далекое будущее Солнечной системы»,

«Межгалактический гость» был обнаружен с помощью данных спектрографа FEROS, установленного на 2,2-метровом телескопе MPG/ESO в обсерватории Ла-Силья.

От Земли звезду HIP 13044 отделяют около 2,2 тыс. световых лет. Она находится в созвездии Печи и входит в так называемый поток Хельми — группу звезд, которые изначально принадлежали небольшой галактике, которая вошла в состав Млечного Пути около 6—8 млрд лет назад.

В химическом составе «пришельца» почти нет химических элементов тяжелее гелия. Это характерно для древних звезд, возникших во время «юности» Вселенной. Тяжелые элементы появились в результате активного ядерного синтеза в очень крупных звездах и распространились по пространству в результате вспышек сверхновых (после этого на месте взрыва остается нейтронная звезда или черная дыра). Ученые пока не могут разобраться, как такая «легкая» звезда смогла сформировать около себя планету. Более 90% известных астрономам экзопланет приходится на «тяжелые» звезды с большим содержанием металлов, и обнаружить планету у такой «первобытной» звезды было крайне удивительно, отметил Сетьяван.

Скорее всего, это не твердая планета земного типа, а газовый гигант.

Авторы работы отмечают, что это первое достоверное открытие экзопланеты, зародившейся в другой галактике. Об открытии экзопланеты в галактике Туманность Андромеды еще в 2009 году, однако тогда это была лишь интерпретация данных единичного эксперимента. Этот объект обнаружили методом гравитационного микролинзирования, когда ученые анализируют колебания искажений света далеких звезд, вызванных гравитацией системы «звезда — планета» и, таким образом, планету. «Шансов повторить эти измерения нет, микролинзирование — единичное событие. Поэтому подтвердить это заявление нельзя», — отмечают авторы новой работы.

Сигнал планеты HIP 13044 b, напротив, очень четкий и воспроизводимый. Астрономы считают, что в ближайшее время независимые и более точные измерения дадут полное подтверждение того, что это действительно внегалактическая экзопланета.

На вопрос про нашу ГАЛАКТИКУ и СОЛНЕЧНУЮ СИСТЕМУ!!! заданный автором Лена Северная лучший ответ это Наша Галактика называется Млечный Путь, эти слова - синонимы на греческом и русском: "галактикос" на др. -греч. - "молочный". Галактик существует великое множество, их больше, чем звёзд на небе, но нашу Галактику пишут с большой буквы или просто называют Млечным Путём. Потому, что Млечный Путь - это и есть наша Галактика, какой мы видим её изнутри. Туманность Андромеды - это соседняя с нами галактика, она имеет обозначение М31 в каталоге Мессье.
Источник:

Ответ от Ўрa Мицней [мастер]
Млечный Путь - это и есть наша Галактика. Млечный Путь - это видимое нами на небе светлое кольцо, а наша Галактика - это пространственная звездная система. Большинство ее звезд мы видим в полосе Млечного Пути, но ими она не исчерпывается. В Галактику входят звезды всех созвездий.
Существуют галактики, включающие триллионы звёзд. Галактика, в которой живём мы, называется Наша Галактика (именно так, с большой буквы) или Млечный Путь, в ней более 200 миллиардов звёзд Самые маленькие галактики содержат звёзд в миллион раз меньше. Помимо обычных звёзд галактики включают в себя пыль, межзвёздный газ, а также различные "экзотические" объекты: белые карлики, нейтронные звёзды, чёрные дыры. Очень похожей на Нашу Галактику является галактика под названием Туманность Андромеды. Как и Наша Галактика, она относится к спиральным галактикам.


Ответ от White Rabbit [гуру]
Наша (моя по крайней мере, насчёт всяких енотов не знаю 🙂 галактика называется МЛЕЧНЫЙ ПУТЬ. А туманность Андромеды - это как раз СОСЕДНЯЯ галактика:
На небе она видна здесь (названа - М31)
Дело в том, что большинство галактик (а их ОЧЕНЬ) много названий не имеют, а только номер по каталогу. Вот и наша соседка туманность Андромеды вместе с её небольшими галактиками спутниками (Большим- и Малым Магеллановым облаком) в каталоге Мессье обозначены как М31...

А вот туманнсть Андромеды в 60-кратный любительский телескоп

"черт!! ! а млечный путь это разве нее просто звездочски???? " - но Галактика-то плоская, блин такой! А поскольку мы внутри с краю - мы и видим свою Галактику как полосу из звёзд... .


Ответ от Пользователь удален [гуру]
P.S. а галактика разве не просто звёздосчки?


Ответ от Krab Вark [гуру]
Ну да, небо пересекает туманная полоса - это мы изнутри диска нашей галактики, называемой Млечный путь, смотрим в плоскости диска, поэтому он кажется нам полосой, опоясывающей небо. Эту полосу древние греки в соответствии со своими легендами о богах называли Млечный путь, отсюда и название нашей галактики. Млечный путь на небе - это диск нашей галактики Млечный путь, видимой изнутри ее. Впрочем, мы находимся в нашей галактике в захолустье, на пустыре между витками ее спиралей, и вокруг много пыли, поэтому мало что видим из ее ста миллиардов звезд, даже ядро ее от нас плотно закрыто завесой пыли. А вообще Млечный путь, если посмотреть на него со стороны, выглядит вот так:
А наш Млечный путь входит в Местную группу галактик, а та - в Сверхскопление Девы, и галактик во Вселенной примерно столько же, сколько звезд в нашей галактике.

Как выглядят со стороны другие звезды и мы уже говорил, а как видел бы нашу солнечную систему и нашу звезду-Солнце, сторонний наблюдатель?

Судя по анализу окружающего космического пространства, Солнечная система в настоящее время движется через местное , состоящее в основном из водорода и некоторой доли гелия. Предполагается, что это местное межзвездное облако раскинулось на расстоянии в 30 световых лет, что в пересчете на километры, составляет что-то около 180 млн. км.

В свою очередь, «наше» облако находится внутри вытянутого газового облака, так называемого местного пузыря , образованного частицами древних сверхновых звезд. Пузырь растянут на 300 световых лет и находится на внутреннем крае одного из спиральных рукавов .

Впрочем, как уже говорилось мною ранее, наше точное положение относительно рукавов Млечного пути нам неизвестно — как не крути, у нас просто нет возможности посмотреть на него со стороны и оценить ситуацию.

Что поделать: если практически в любом месте планеты вы можете определить ваше местоположение с достаточной точностью, то, если вы имеете дело с галактическими масштабами, это невозможно — наша галактика имеет 100 тыс. световых лет в поперечнике. Даже при изучении космического пространства вокруг нас многое остается неясно.

Если мы воспользуемся системой межгалактического позиционирования, мы вероятно обнаружим себя между верхней и нижней частью Млечного пути и на полпути между центром и внешним краем галактики. Согласно одной из гипотез мы поселились в довольно «престижном районе» галактики.

Существует предположение, что звезды, находящиеся на определенном расстоянии от центра галактики, находятся в так называемой обитаемой зоне , то есть там, где теоретически возможна жизнь. А жизнь возможна лишь в правильном месте с правильной температурой — на планете, расположенной на таком расстоянии от звезды, чтобы на ней жидкая вода. Только тогда жизнь сможет появиться и эволюционировать. В целом обитаемая зона простирается на 13 – 35 тыс. лет от центра Млечного пути. Учитывая, что наша солнечная система находится в 20 – 29 световых годах от ядра галактики, мы как раз посередине «жизненного оптимума».

Впрочем, в настоящее время Солнечная система действительно является очень спокойным «районом» космоса. Планеты системы давно сформировались, «блуждающие» планеты либо разбились о соседей, либо сгинули за пределами нашего звездного дома, да и количество астероидов и метеоритов значительно снизилось по сравнению с тем хаосом, что царил вокруг 4 миллиарда лет назад.

Мы считаем, что ранние звезды формировались только из водорода и гелия. Но так как звезды – это своего рода , с течением времени образовались более тяжелые элементы. Это крайне важно, потому что, когда звезды умирают и взрываются, образуется . Их остатки становятся строительным материалом для более тяжелых элементов и своеобразными семенами галактики. Откуда бы иначе им взяться, как не из «кузнецы химических элементов» находящейся в недрах звезд?

Вот, для примера, углерод в наших клетках, кислород в наших легких, кальций в наших костях, железо в нашей крови – все это те самые тяжелые элементы.

В необитаемой зоне, по-видимому, отсутствовали те процессы, которые сделали возможным возникновение жизни на Земле. Ближе к краю галактики взорвалось меньше массивных звезд, следовательно, было выброшено меньше тяжелых элементов. Дальше в галактике вы не найдете атомов таких важных для жизни элементов как кислород, углерод, азот. Обитаемая зона характеризуется наличием этих более тяжелых атомов и за ее границами жизнь попросту невозможна.

Если крайняя часть галактики – «плохой район», то ее центральная часть еще хуже. И чем ближе к галактическому ядру, тем опаснее. Во времена Коперника, мы считали, что находимся в центре Вселенной. Похоже, после всего, что мы узнали о небесах, мы решили, что находимся в центре галактики. Теперь, когда нам известно еще больше, мы понимаем, как нам повезло оказаться не в центре.

В самом центре Млечного пути находится объект огромной массы – Стрелец А, черная дыра около 14 млн. км в поперечнике, ее масса в 3700 раз больше массы нашего Солнца. Черная дыра, находящаяся в центре галактики, выделяет мощное радиоизлучение, достаточное для того, чтобы испепелить все известные формы жизни. Так, что приблизится к ней невозможно. Есть и другие регионы галактики, которые непригодны для жизни. Например, из-за сильнейшего излучения .

Звезды О-типа – это гиганты значительно горячее Солнца, больше его в 10 – 15 раз и выбрасывающие в космос колоссальные дозы ультрафиолетового излучения. Под лучами такой звезды гибнет все. Такие звезды способны разрушить планеты еще до того, как они закончат формироваться. Излучение от них столь велико, что просто сдирает материю с формирующихся планет и планетарных систем, и буквально срывает планеты с орбит.

Звезды O-типа, это самые настоящие «звезды смерти». Никакая жизнь невозможна в радиусе 10 и больше световых лет от них.

Так что наш уголок галактики – как цветущий сад между пустыней и океаном. У нас есть все необходимые для жизни элементы. На нашем участке главным барьером против космических лучей служит магнитное поле Солнце, а против радиации от Солнца нас защищает магнитное поле Земли. Магнитное поле Солнца отвечает за солнечный ветер , который является защитой от тех неприятностей, которые приходят к нам с края Солнечной системы. Магнитное поле Солнце раскручивает солнечный ветер, представляющий из себя заряженные потоки протонов и электронов, выстреливающих из Солнца со скоростью миллион км в час.

Солнечный ветер несет магнитное поле на расстояние в три раза превышающее орбиту Нептуна. Но миллиард километров спустя в месте, называемом гелиопаузой, солнечный ветер иссякает и почти исчезает. Замедлившись, он перестает быть барьером для космических лучей межзвездного пространства. Это место является границей гелиосферы.

Если бы не было гелиосферы, космические лучи беспрепятственно проникали бы в нашу Солнечную систему. Гелиосфера работает, как клетка для погружения с акулами, только вместо акул здесь радиация, а вместо аквалангиста – наша планета.

Некоторые из космических лучей все же проникают через барьер. Но теряют при этом большую часть своей силы. Раньше мы считали, что гелиосфера – это такой изящный барьер, что-то вроде складчатого занавеса из магнитного поля. До тех пор, пока не были получены данные с Вояджера 1 и Вояджера 2, запущенных в 1997 году. В начале 21 века были обработаны данные с аппаратов. Оказалось, что магнитное поле на границе гелиосферы представляет собой что-то вроде магнитной пены, каждый пузырек которой составляет около 100 млн. км в ширину. Мы привыкли думать, что поверхность поля сплошная, создающая надежный барьер. Но, как выяснилось, оно состоит из пузырьков и узоров.

Когда мы исследуем наши галактические окрестности, нам мешает пыль и газ, чтобы рассмотреть объекты более детально. За долгую историю наблюдений мы выяснили следующее. Когда мы исследуем ночное небо невооруженным глазом или с помощью телескопа, мы видим многое в видимой части спектра. Но это лишь часть того, что там есть на самом деле. Некоторые телескопы могут видеть через космическую пыль благодаря функции инфракрасного видения .

Звезды очень горячи, но скрываются в оболочках из пыли. А в инфракрасный телескоп мы можем их наблюдать. Объекты могут быть прозрачными или непрозрачными, все зависит от световых волн, то есть света, который либо может, либо не может через них пройти. Если что-то вроде газа или космической пыли становится между объектом наблюдения и телескопом, можно переместиться в другую часть спектра, где световые волны будут иметь другую частоту. В таком случае это препятствие может стать видимым.

Вооружившись инфракрасными и другими приспособлениями, мы обнаружили вокруг себя множество космических соседей, о существовании которых не подозревали. Существует ряд приборов для наблюдения за космическими телами, звездами в разных частях спектра.

Обнаружив множество новых космических тел вокруг нас, мы задумываемся как они ведут себя, как они повлияли на Землю в момент зарождения жизни на Земле. Некоторые из них – «хорошие соседи», то есть ведут себя предсказуемо, движутся по предсказуемой траектории. «Плохие соседи» — непредсказуемые. Это может быть взрыв умирающей звезды или столкновение, осколки от которого полетят в нашу сторону.

Некоторые из наших соседей могли в древности принести нам «подарок», который изменил все. Когда наша Земля заканчивала формировать и остывала, поверхность была все еще очень горячей. А так как вода попросту испарилась, вновь она могла быть принесена на Землю многочисленными кометами или астероидами. Существует множество теорий о том, как мы могли получить воду.

Согласно одной из них, воду могли принести ледяные тела, пришедшие в Солнечную систему извне или оставшиеся после формирования Солнца и планет. Согласно одной из последних теорий около 4 млн. лет назад гравитация тяжелого газового гиганта Юпитера направила ледяные астероиды в сторону Марса, Земли и Венеры. Но только на Земле лед смог проникнуть в мантию. Вода размягчила Землю и инициировала процесс тектоники плит, вследствие чего появились континенты и океаны.

А каким образом в океанах зародилась жизнь? Может быть, необходимы органические соединения попали в них из космоса? В некоторых метеоритах, которые называют углекислые хандриты, ученые обнаружили органические соединения, которые могли способствовать развитию жизни на Земле. Эти соединения похожи на те, которые были собраны из антарктических метеоритов, образцов межзвездной пыли и фрагментов комет, полученных НАСА из звездной пыли в 2005 году.

Происхождение жизни – это длинная цепь реакций органических соединений. Все органические соединения содержат углерод и вполне возможно, что различные обстоятельства привели к тому, что образовались различные органические соединения. Одни могли образовать здесь, на планете, а другие в космосе. Вполне возможно, что без этих межгалагтических подарков от наших соседей жизнь на Земле так бы и не появилась.

Но есть и непредсказуемые соседи. Например, звезда — оранжевый карлик Глизе 710 . Эта звезда на 60% массивнее Солнца, в настоящее время всего в 63 световых годах от Земли и продолжает приближаться к Солнечной системе.

Облако Оорта — громадная сфера из замороженных камней и глыб льда, окружающая Солнечную систему (в центре). Источник комет и блуждающих метеоритов «из вне» нашей системы

Также на расстоянии 1 светового года от Земли находится так называемое облако Оорта . Мы можем наблюдать кометы из облака Оорта, если они проходят достаточно близко к Солнцу, но обычно так не бывает и мы их не видим.

Есть же и просто «странные соседи». Один из них (вернее, целая семья) это звезды созвездия Центавра.

Звезда Альфа Центавра, самая яркую звезду в созвездии Центавра, для нас третья по яркости звезда ночного неба. Она – ближайшая наша соседка, находится в 4 световых годах от нас. До 20-го века считалось, что это двойная звезда, но позже выяснилось, что мы наблюдаем ни что иное, как звездную систему из обращающихся вокруг друг друга сразу трех звезд!

Альфа Центавра А очень похожа на наше Солнце, и масса у неё такая же. Альфа Центавра Б немного меньше, а третья звезда Проксима Центравра является звездой типа М, масса которой составляет около 12% массы Солнца. Она так мала, что мы не можем наблюдать ее невооруженным взглядом.

Оказывается, многие другие наши звезды-соседи также имеют несколько систем. Сириус, находящийся на расстоянии около 8,5 световых лет, известный как одна из самых ярких звезд на небе, тоже является двойной звездой. Большинство звезд меньше нашего Солнца и часто являются двойными. Так что наше Солнце-одиночка – скорее исключение из правил.

Большинство звезд вокруг – это красные или коричневые карлики. Красные карлики составляют до 70% всех звезд не только в нашей галактике, но и во Вселенной. Мы привыкли к нашему Солнцу, оно кажется нам эталоном, но красных карликов гораздо больше.

Мы не были уверены есть ли среди наших соседей коричневые карлики до 1990 года. Эти космические объекты также уникальны — не совсем звезды, но и не планеты, да и цвет у них совсем не коричневых.

Коричневые карлики – одни из самых загадочных обитателей нашей Солнечной системы, поскольку они действительно очень холодные и очень темные. Они излучают мало света, поэтому их крайне трудно наблюдать. В 2011 году один из телескопов НАСА, широкоугольный исследователь в инфракрасных лучах, где-то на расстоянии 9 – 40 световых лет от Земли обнаружил множество коричневых карликов с такой температурой поверхности, которая когда-то считалась невозможной. Некоторые из этих коричневых карликов настолько прохладны, что их можно даже потрогать. Температура их поверхности всего 26°С. Звезды комнатной температуры — чего только не увидишь во вселенной!

Однако снаружи нашего «местного пузыря» есть не только звезды, но и планеты, а точнее экзопланет — то есть обращающихся не вокруг Солнца. Открытие такие планет — чрезвычайно сложное событий. Это все равно, что наблюдать за одной единственной лампочкой в ночном Лас Вегасе! Фактически, мы даже не видим этих планет, а только догадываемся о них, когда Телескоп Кеплера отслеживающий изменение яркости звезд, фиксирует ничтожное изменение блеска звезды, когда одна из экзопленет, проходит по её диску.

Насколько нам известно, наш ближайший экзопланетарный сосед находится буквально «на одной» улице с нами, «всего» в 10 световых годах, на орбите оранжевой звезды Эпсилон Эридана. Однако экзопланета похожа скорее не на Землю, а на Юпитер, так как является огромным газовым гигантом. Впрочем, учитывая, что с момента первых открытий экзопланет прошло меньше двух десятков лет, как знать, что ждет нас дальше.

В 2011 году в нашем районе астрономы обнаружили новый вид планет – бездомные планеты. Оказывается, существуют планеты, которые не вращаются вокруг своей родительской звезды. Они начали свою жизнь, как и все остальные планеты, но в силу тех или иных причин были смещены со своей орбиты, покинули свои солнечные системы и теперь бесцельно блуждают по галактике без возможности вернуться домой. Это удивительно, но потребуется новое определения для названия подобного рода планет, для планет, существующих вне притяжения своих родительских звезд.

Впрочем, на горизонте маячит и пара событий, которые могут стать настоящей сенсацией даже в масштабах космоса.

18 ноября астрономы всего мира были приведены в необычайное душевное волнение изумительным открытием: в Млечном Пути была найдена экзопланета , «родившаяся» в другой галактике. Сейчас эксперты говорят, что изучение этой уникальной системы может дать представление о том, какая судьба ждет Землю в Солнечной системе. Кроме того, исследования Звезды и ее планеты, которые были захвачены нашей галактикой, поможет астрономам предсказать будущее всей Солнечной системы после того, как наша Звезда достигнет конца жизненного цикла, превратившись сначала в красного гиганта, а затем в белого карлика.

Экзопланета , которая получила имя HIP 13044b, - это газовый гигант, масса которого превышает массу Юпитера (самой большой планеты в нашей системе) на 25 процентов. Зато, в отличие от Юпитера, орбита HIP 13044b проходит к своей Звезде на расстоянии всего 5 миллионов километров. Для того чтобы вы поняли, насколько это незначительное расстояние, скажем, что год (то есть полный оборот вокруг Звезды) на этом небесном теле длится чуть более 16 земных суток. Астрономы предполагают, что так было не всегда. Скорее всего, звезда, разрастаясь, сорвала планету со своей достаточно далекой орбиты (а иначе она бы не смогла пережить стадию красного гиганта) и притянула на смертельно опасное расстояние.

Звезда, вокруг которой вертится героиня нашей истории, возникла в ближайшей к нам карликовой галактике от 6 до 9 миллиардов лет назад. В процессе так называемого галактического каннибализма, когда одна галактика поглощает другую, Звезда стала частью Млечного Пути. Спустя положенный срок она начала превращаться в красного гиганта, ее газовая атмосфера начала расширяться, втягивая в себя все собственные планеты, разрывая их и уничтожая без следа. И тем не менее, по какой-то пока непонятной астрономам причине, экзопланета HIP 13044b осталась жива. Она до сих пор вертится вокруг своей звезды по небольшой орбите. Естественно, на ней не может быть не то что жизни, но даже микроорганизмов. И все же загадка будет будоражить умы ученых еще не один год.

Что интересно, согласно анализу экспертов, наше Солнце и Звезда-пришелица аналогичные небесные тела, это означает, что они родились и развивались примерно по одной схеме, однако блудная Звезда гораздо старше нашей. Именно поэтому астрономы надеются использовать материал наблюдений за необычной системой, чтобы понять, как Солнце будет вести себя в ближайшие 3 - 6 миллиардов лет. Считается, что наше светило достигнет фазы красного гиганта примерно через 5 миллиардов лет, когда исчерпает запасы водорода.


В нашей собственной Солнечной системе только Марс и газовые гиганты, скорее всего, смогут избежать огнедышащих объятий Солнца, когда оно превратиться в красного гиганта. Что касается Меркурия и Венеры - у них нет ни одного шанса. А вот спор вокруг судьбы Земли идет до сих пор. Возможно, HIP 13044b сможет его разрешить. Ученые считают, что после увеличения объема солнца, у человечества все же будет шанс выжить. Возможно, одна из лун Сатурна когда-нибудь станет нашим вторым домом.

Для нас, неспециалистов, иногда непонятны волнения ученых вокруг космических событий. Ну, нашли планету из другой галактики, которая вращается вокруг своей Звезды. А что здесь такого? Но оказывается, что до сих пор никому не удавалось подтвердить существование экзопланет , вращающихся вокруг звезд в иных галактиках! Причина - огромные расстояния, не позволяющие проводить наблюдения и точные измерения. Так что открытие HIP 13044b дорогого стоит. Ее существование подтверждает теоретические выкладки астрономов, которые считают, что существуют не только звезды и планеты, но и разумные существа в других галактиках.

Похожие публикации